File size: 1,747 Bytes
5d8d3fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
{
  "_class_name": "AutoencoderKL",
  "_commit_hash": null,
  "_diffusers_version": "0.30.3",
  "_name_or_path": "/home/ubuntu/.cache/huggingface/hub/models--diffusers--stable-diffusion-xl-1.0-inpainting-0.1/snapshots/115134f363124c53c7d878647567d04daf26e41e/vae",
  "_use_default_values": [
    "latents_mean",
    "use_post_quant_conv",
    "shift_factor",
    "mid_block_add_attention",
    "latents_std",
    "use_quant_conv"
  ],
  "act_fn": "silu",
  "block_out_channels": [
    128,
    256,
    512,
    512
  ],
  "down_block_types": [
    "DownEncoderBlock2D",
    "DownEncoderBlock2D",
    "DownEncoderBlock2D",
    "DownEncoderBlock2D"
  ],
  "force_upcast": false,
  "in_channels": 3,
  "latent_channels": 4,
  "latents_mean": null,
  "latents_std": null,
  "layers_per_block": 2,
  "mid_block_add_attention": true,
  "neuron": {
    "auto_cast": "matmul",
    "auto_cast_type": "bf16",
    "compiler_type": "neuronx-cc",
    "compiler_version": "2.15.128.0+56dc5a86",
    "dynamic_batch_size": false,
    "inline_weights_to_neff": true,
    "input_names": [
      "latent_sample"
    ],
    "model_type": "vae-decoder",
    "optlevel": "2",
    "output_attentions": false,
    "output_hidden_states": false,
    "output_names": [
      "sample"
    ],
    "static_batch_size": 1,
    "static_height": 128,
    "static_num_channels": 4,
    "static_width": 128
  },
  "norm_num_groups": 32,
  "out_channels": 3,
  "sample_size": 512,
  "scaling_factor": 0.13025,
  "shift_factor": null,
  "task": "semantic-segmentation",
  "transformers_version": null,
  "up_block_types": [
    "UpDecoderBlock2D",
    "UpDecoderBlock2D",
    "UpDecoderBlock2D",
    "UpDecoderBlock2D"
  ],
  "use_post_quant_conv": true,
  "use_quant_conv": true
}