File size: 2,031 Bytes
32eec81
b6331ca
 
32eec81
 
1e69640
32eec81
 
1e69640
32eec81
 
 
1e69640
32eec81
 
 
 
 
1bf1bf1
1e69640
32eec81
 
 
 
 
 
1e69640
32eec81
 
 
 
 
1e69640
32eec81
1e69640
32eec81
1e69640
 
32eec81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- he
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Large V2 Hebrew
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: he_il
      split: test
      args: he_il
    metrics:
    - name: Wer
      type: wer
      value: 27.250397341424648
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large V2 Hebrew

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the google/fleurs he_il dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4106
- Wer: 27.2504

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 128
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.425         | 24.01 | 50   | 0.4106          | 27.2504 |
| 0.1906        | 49.01 | 100  | 0.4420          | 29.0131 |
| 0.0982        | 74.01 | 150  | 0.4795          | 30.3063 |
| 0.0717        | 99.01 | 200  | 0.4945          | 30.8915 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2