|
export TRANSFORMERS_CACHE=/workspace/cache |
|
export HF_HOME=/workspace/data_cache |
|
|
|
python -m torch.distributed.launch --nproc_per_node 2 run_speech_recognition_seq2seq_streaming.py \ |
|
--model_name_or_path="openai/whisper-large-v2" \ |
|
--dataset_name="google/fleurs" \ |
|
--dataset_config_name="he_il" \ |
|
--language="Hebrew" \ |
|
--train_split_name="train+validation" \ |
|
--eval_split_name="test" \ |
|
--model_index_name="Whisper Large V2 Hebrew" \ |
|
--max_steps="200" \ |
|
--output_dir="./" \ |
|
--per_device_train_batch_size="64" \ |
|
--gradient_accumulation_steps="4" \ |
|
--per_device_eval_batch_size="16" \ |
|
--logging_steps="25" \ |
|
--learning_rate="1e-6" \ |
|
--warmup_steps="40" \ |
|
--evaluation_strategy="steps" \ |
|
--eval_steps="50" \ |
|
--save_strategy="steps" \ |
|
--save_steps="50" \ |
|
--generation_max_length="225" \ |
|
--length_column_name="input_length" \ |
|
--max_duration_in_seconds="30" \ |
|
--text_column_name="transcription" \ |
|
--freeze_feature_encoder="False" \ |
|
--report_to="tensorboard" \ |
|
--metric_for_best_model="wer" \ |
|
--greater_is_better="False" \ |
|
--load_best_model_at_end \ |
|
--gradient_checkpointing \ |
|
--fp16 \ |
|
--overwrite_output_dir \ |
|
--do_train \ |
|
--do_eval \ |
|
--predict_with_generate \ |
|
--do_normalize_eval \ |
|
--streaming \ |
|
--do_remove_punctuation \ |
|
--use_auth_token \ |
|
--push_to_hub |