Shishuai commited on
Commit
03b9140
·
1 Parent(s): 3fc4e32

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/chatglm-6b",
3
+ "architectures": [
4
+ "ChatGLMForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
8
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
9
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
10
+ },
11
+ "bos_token_id": 130004,
12
+ "eos_token_id": 130005,
13
+ "gmask_token_id": 130001,
14
+ "hidden_size": 4096,
15
+ "inner_hidden_size": 16384,
16
+ "layernorm_epsilon": 1e-05,
17
+ "mask_token_id": 130000,
18
+ "max_sequence_length": 2048,
19
+ "model_type": "chatglm",
20
+ "num_attention_heads": 32,
21
+ "num_layers": 28,
22
+ "pad_token_id": 3,
23
+ "position_encoding_2d": true,
24
+ "pre_seq_len": 128,
25
+ "prefix_projection": false,
26
+ "quantization_bit": 4,
27
+ "torch_dtype": "float16",
28
+ "transformers_version": "4.27.0",
29
+ "use_cache": true,
30
+ "vocab_size": 130528
31
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ChatGLM model configuration """
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class ChatGLMConfig(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`~ChatGLMModel`].
12
+ It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
13
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
14
+ the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used
17
+ to control the model outputs. Read the documentation from [`PretrainedConfig`]
18
+ for more information.
19
+
20
+
21
+ Args:
22
+ vocab_size (`int`, *optional*, defaults to 150528):
23
+ Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
24
+ `inputs_ids` passed when calling [`~ChatGLMModel`] or
25
+ [`~TFChatGLMModel`].
26
+ hidden_size (`int`, *optional*, defaults to 4096):
27
+ Dimension of the encoder layers and the pooler layer.
28
+ num_hidden_layers (`int`, *optional*, defaults to 28):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ inner_hidden_size (`int`, *optional*, defaults to 16384):
33
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
34
+ max_sequence_length (`int`, *optional*, defaults to 512):
35
+ The maximum sequence length that this model might ever be used with.
36
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
37
+ layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
38
+ The epsilon used by the layer normalization layers.
39
+ use_cache (`bool`, *optional*, defaults to `True`):
40
+ Whether the model should return the last key/values attentions (not used by all models).
41
+ Example:
42
+
43
+ ```python
44
+ >>> from configuration_chatglm import ChatGLMConfig
45
+ >>> from modeling_chatglm import ChatGLMModel
46
+
47
+ >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
48
+ >>> configuration = ChatGLMConfig()
49
+
50
+ >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
51
+ >>> model = ChatGLMModel(configuration)
52
+
53
+ >>> # Accessing the model configuration
54
+ >>> configuration = model.config
55
+ ```
56
+ """
57
+ model_type = "chatglm"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_size=150528,
62
+ hidden_size=4096,
63
+ num_layers=28,
64
+ num_attention_heads=32,
65
+ layernorm_epsilon=1e-5,
66
+ use_cache=False,
67
+ bos_token_id=150004,
68
+ eos_token_id=150005,
69
+ mask_token_id=150000,
70
+ gmask_token_id=150001,
71
+ pad_token_id=0,
72
+ max_sequence_length=2048,
73
+ inner_hidden_size=16384,
74
+ position_encoding_2d=True,
75
+ quantization_bit=0,
76
+ pre_seq_len=None,
77
+ prefix_projection=False,
78
+ **kwargs
79
+ ):
80
+ self.num_layers = num_layers
81
+ self.vocab_size = vocab_size
82
+ self.hidden_size = hidden_size
83
+ self.num_attention_heads = num_attention_heads
84
+ self.max_sequence_length = max_sequence_length
85
+ self.layernorm_epsilon = layernorm_epsilon
86
+ self.inner_hidden_size = inner_hidden_size
87
+ self.use_cache = use_cache
88
+ self.bos_token_id = bos_token_id
89
+ self.eos_token_id = eos_token_id
90
+ self.pad_token_id = pad_token_id
91
+ self.mask_token_id = mask_token_id
92
+ self.gmask_token_id = gmask_token_id
93
+ self.position_encoding_2d = position_encoding_2d
94
+ self.quantization_bit = quantization_bit
95
+ self.pre_seq_len = pre_seq_len
96
+ self.prefix_projection = prefix_projection
97
+
98
+ super().__init__(
99
+ pad_token_id=pad_token_id,
100
+ bos_token_id=bos_token_id,
101
+ eos_token_id=eos_token_id,
102
+ **kwargs
103
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 130004,
4
+ "eos_token_id": 130005,
5
+ "pad_token_id": 3,
6
+ "transformers_version": "4.27.0"
7
+ }
ice_text.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e974d9a69c242ce014c88c2b26089270f6198f3c0b700a887666cd3e816f17e
3
+ size 2706249
modeling_chatglm.py ADDED
@@ -0,0 +1,1435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import os
6
+ import warnings
7
+ import re
8
+ import sys
9
+
10
+ import torch
11
+ import torch.utils.checkpoint
12
+ import torch.nn.functional as F
13
+ from torch import nn
14
+ from torch.nn import CrossEntropyLoss, LayerNorm
15
+ from torch.nn.utils import skip_init
16
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
17
+
18
+ from transformers.utils import (
19
+ add_code_sample_docstrings,
20
+ add_start_docstrings,
21
+ add_start_docstrings_to_model_forward,
22
+ )
23
+ from transformers.modeling_outputs import (
24
+ BaseModelOutputWithPast,
25
+ CausalLMOutputWithPast,
26
+ BaseModelOutputWithPastAndCrossAttentions,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import logging
30
+ from transformers.generation.logits_process import LogitsProcessor
31
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
32
+
33
+ from .configuration_chatglm import ChatGLMConfig
34
+
35
+ # flags required to enable jit fusion kernels
36
+
37
+ if sys.platform != 'darwin':
38
+ torch._C._jit_set_profiling_mode(False)
39
+ torch._C._jit_set_profiling_executor(False)
40
+ torch._C._jit_override_can_fuse_on_cpu(True)
41
+ torch._C._jit_override_can_fuse_on_gpu(True)
42
+
43
+ logger = logging.get_logger(__name__)
44
+
45
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
46
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
47
+
48
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
49
+ "THUDM/chatglm-6b",
50
+ # See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
51
+ ]
52
+
53
+
54
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
55
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
56
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
57
+ scores.zero_()
58
+ scores[..., 5] = 5e4
59
+ return scores
60
+
61
+
62
+ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
63
+ """Load tf checkpoints in a pytorch model."""
64
+ try:
65
+ import re
66
+
67
+ import numpy as np
68
+ import tensorflow as tf
69
+ except ImportError:
70
+ logger.error(
71
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
72
+ "https://www.tensorflow.org/install/ for installation instructions."
73
+ )
74
+ raise
75
+ tf_path = os.path.abspath(tf_checkpoint_path)
76
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
77
+ # Load weights from TF model
78
+ init_vars = tf.train.list_variables(tf_path)
79
+ names = []
80
+ arrays = []
81
+ for name, shape in init_vars:
82
+ logger.info(f"Loading TF weight {name} with shape {shape}")
83
+ array = tf.train.load_variable(tf_path, name)
84
+ names.append(name)
85
+ arrays.append(array)
86
+
87
+ for name, array in zip(names, arrays):
88
+ name = name.split("/")
89
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
90
+ # which are not required for using pretrained model
91
+ if any(
92
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
93
+ for n in name
94
+ ):
95
+ logger.info(f"Skipping {'/'.join(name)}")
96
+ continue
97
+ pointer = model
98
+ for m_name in name:
99
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
100
+ scope_names = re.split(r"_(\d+)", m_name)
101
+ else:
102
+ scope_names = [m_name]
103
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
104
+ pointer = getattr(pointer, "weight")
105
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
106
+ pointer = getattr(pointer, "bias")
107
+ elif scope_names[0] == "output_weights":
108
+ pointer = getattr(pointer, "weight")
109
+ elif scope_names[0] == "squad":
110
+ pointer = getattr(pointer, "classifier")
111
+ else:
112
+ try:
113
+ pointer = getattr(pointer, scope_names[0])
114
+ except AttributeError:
115
+ logger.info(f"Skipping {'/'.join(name)}")
116
+ continue
117
+ if len(scope_names) >= 2:
118
+ num = int(scope_names[1])
119
+ pointer = pointer[num]
120
+ if m_name[-11:] == "_embeddings":
121
+ pointer = getattr(pointer, "weight")
122
+ elif m_name == "kernel":
123
+ array = np.transpose(array)
124
+ try:
125
+ assert (
126
+ pointer.shape == array.shape
127
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
128
+ except AssertionError as e:
129
+ e.args += (pointer.shape, array.shape)
130
+ raise
131
+ logger.info(f"Initialize PyTorch weight {name}")
132
+ pointer.data = torch.from_numpy(array)
133
+ return model
134
+
135
+
136
+ class PrefixEncoder(torch.nn.Module):
137
+ """
138
+ The torch.nn model to encode the prefix
139
+ Input shape: (batch-size, prefix-length)
140
+ Output shape: (batch-size, prefix-length, 2*layers*hidden)
141
+ """
142
+
143
+ def __init__(self, config):
144
+ super().__init__()
145
+ self.prefix_projection = config.prefix_projection
146
+ if self.prefix_projection:
147
+ # Use a two-layer MLP to encode the prefix
148
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
149
+ self.trans = torch.nn.Sequential(
150
+ torch.nn.Linear(config.hidden_size, config.hidden_size),
151
+ torch.nn.Tanh(),
152
+ torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
153
+ )
154
+ else:
155
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
156
+
157
+ def forward(self, prefix: torch.Tensor):
158
+ if self.prefix_projection:
159
+ prefix_tokens = self.embedding(prefix)
160
+ past_key_values = self.trans(prefix_tokens)
161
+ else:
162
+ past_key_values = self.embedding(prefix)
163
+ return past_key_values
164
+
165
+
166
+ @torch.jit.script
167
+ def gelu_impl(x):
168
+ """OpenAI's gelu implementation."""
169
+ return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
170
+ (1.0 + 0.044715 * x * x)))
171
+
172
+
173
+ def gelu(x):
174
+ return gelu_impl(x)
175
+
176
+
177
+ class RotaryEmbedding(torch.nn.Module):
178
+ def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
179
+ super().__init__()
180
+ inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
181
+ inv_freq = inv_freq.half()
182
+ self.learnable = learnable
183
+ if learnable:
184
+ self.inv_freq = torch.nn.Parameter(inv_freq)
185
+ self.max_seq_len_cached = None
186
+ else:
187
+ self.register_buffer('inv_freq', inv_freq)
188
+ self.max_seq_len_cached = None
189
+ self.cos_cached = None
190
+ self.sin_cached = None
191
+ self.precision = precision
192
+
193
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
194
+ error_msgs):
195
+ pass
196
+
197
+ def forward(self, x, seq_dim=1, seq_len=None):
198
+ if seq_len is None:
199
+ seq_len = x.shape[seq_dim]
200
+ if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
201
+ self.max_seq_len_cached = None if self.learnable else seq_len
202
+ t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
203
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
204
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
205
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
206
+ if self.precision == torch.bfloat16:
207
+ emb = emb.float()
208
+
209
+ # [sx, 1 (b * np), hn]
210
+ cos_cached = emb.cos()[:, None, :]
211
+ sin_cached = emb.sin()[:, None, :]
212
+ if self.precision == torch.bfloat16:
213
+ cos_cached = cos_cached.bfloat16()
214
+ sin_cached = sin_cached.bfloat16()
215
+ if self.learnable:
216
+ return cos_cached, sin_cached
217
+ self.cos_cached, self.sin_cached = cos_cached, sin_cached
218
+ return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
219
+
220
+ def _apply(self, fn):
221
+ if self.cos_cached is not None:
222
+ self.cos_cached = fn(self.cos_cached)
223
+ if self.sin_cached is not None:
224
+ self.sin_cached = fn(self.sin_cached)
225
+ return super()._apply(fn)
226
+
227
+
228
+ def rotate_half(x):
229
+ x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
230
+ return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
231
+
232
+
233
+ @torch.jit.script
234
+ def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
235
+ # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
236
+ cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
237
+ F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
238
+ q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
239
+ return q, k
240
+
241
+
242
+ def attention_fn(
243
+ self,
244
+ query_layer,
245
+ key_layer,
246
+ value_layer,
247
+ attention_mask,
248
+ hidden_size_per_partition,
249
+ layer_id,
250
+ layer_past=None,
251
+ scaling_attention_score=True,
252
+ use_cache=False,
253
+ ):
254
+ if layer_past is not None:
255
+ past_key, past_value = layer_past[0], layer_past[1]
256
+ key_layer = torch.cat((past_key, key_layer), dim=0)
257
+ value_layer = torch.cat((past_value, value_layer), dim=0)
258
+
259
+ # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
260
+ seq_len, b, nh, hidden_size = key_layer.shape
261
+
262
+ if use_cache:
263
+ present = (key_layer, value_layer)
264
+ else:
265
+ present = None
266
+
267
+ query_key_layer_scaling_coeff = float(layer_id + 1)
268
+ if scaling_attention_score:
269
+ query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
270
+
271
+ # ===================================
272
+ # Raw attention scores. [b, np, s, s]
273
+ # ===================================
274
+
275
+ # [b, np, sq, sk]
276
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
277
+
278
+ # [sq, b, np, hn] -> [sq, b * np, hn]
279
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
280
+ # [sk, b, np, hn] -> [sk, b * np, hn]
281
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
282
+
283
+ matmul_result = torch.zeros(
284
+ 1, 1, 1,
285
+ dtype=query_layer.dtype,
286
+ device=query_layer.device,
287
+ )
288
+
289
+ matmul_result = torch.baddbmm(
290
+ matmul_result,
291
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
292
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
293
+ beta=0.0,
294
+ alpha=1.0,
295
+ )
296
+
297
+ # change view to [b, np, sq, sk]
298
+ attention_scores = matmul_result.view(*output_size)
299
+
300
+ if self.scale_mask_softmax:
301
+ self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
302
+ attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
303
+ else:
304
+ if not (attention_mask == 0).all():
305
+ # if auto-regressive, skip
306
+ attention_scores.masked_fill_(attention_mask, -10000.0)
307
+ dtype = attention_scores.dtype
308
+ attention_scores = attention_scores.float()
309
+ attention_scores = attention_scores * query_key_layer_scaling_coeff
310
+
311
+ attention_probs = F.softmax(attention_scores, dim=-1)
312
+
313
+ attention_probs = attention_probs.type(dtype)
314
+
315
+ # =========================
316
+ # Context layer. [sq, b, hp]
317
+ # =========================
318
+
319
+ # value_layer -> context layer.
320
+ # [sk, b, np, hn] --> [b, np, sq, hn]
321
+
322
+ # context layer shape: [b, np, sq, hn]
323
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
324
+
325
+ # change view [sk, b * np, hn]
326
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
327
+
328
+ # change view [b * np, sq, sk]
329
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
330
+
331
+ # matmul: [b * np, sq, hn]
332
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
333
+
334
+ # change view [b, np, sq, hn]
335
+ context_layer = context_layer.view(*output_size)
336
+
337
+ # [b, np, sq, hn] --> [sq, b, np, hn]
338
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
339
+
340
+ # [sq, b, np, hn] --> [sq, b, hp]
341
+ new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
342
+ context_layer = context_layer.view(*new_context_layer_shape)
343
+
344
+ outputs = (context_layer, present, attention_probs)
345
+
346
+ return outputs
347
+
348
+
349
+ def default_init(cls, *args, **kwargs):
350
+ return cls(*args, **kwargs)
351
+
352
+
353
+ class SelfAttention(torch.nn.Module):
354
+ def __init__(self, hidden_size, num_attention_heads,
355
+ layer_id, hidden_size_per_attention_head=None, bias=True,
356
+ params_dtype=torch.float, position_encoding_2d=True, empty_init=True):
357
+ if empty_init:
358
+ init_method = skip_init
359
+ else:
360
+ init_method = default_init
361
+ super(SelfAttention, self).__init__()
362
+
363
+ self.layer_id = layer_id
364
+ self.hidden_size = hidden_size
365
+ self.hidden_size_per_partition = hidden_size
366
+ self.num_attention_heads = num_attention_heads
367
+ self.num_attention_heads_per_partition = num_attention_heads
368
+ self.position_encoding_2d = position_encoding_2d
369
+ self.rotary_emb = RotaryEmbedding(
370
+ self.hidden_size // (self.num_attention_heads * 2)
371
+ if position_encoding_2d
372
+ else self.hidden_size // self.num_attention_heads,
373
+ base=10000,
374
+ precision=torch.half,
375
+ learnable=False,
376
+ )
377
+
378
+ self.scale_mask_softmax = None
379
+
380
+ if hidden_size_per_attention_head is None:
381
+ self.hidden_size_per_attention_head = hidden_size // num_attention_heads
382
+ else:
383
+ self.hidden_size_per_attention_head = hidden_size_per_attention_head
384
+
385
+ self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
386
+
387
+ # Strided linear layer.
388
+ self.query_key_value = init_method(
389
+ torch.nn.Linear,
390
+ hidden_size,
391
+ 3 * self.inner_hidden_size,
392
+ bias=bias,
393
+ dtype=params_dtype,
394
+ )
395
+
396
+ self.dense = init_method(
397
+ torch.nn.Linear,
398
+ self.inner_hidden_size,
399
+ hidden_size,
400
+ bias=bias,
401
+ dtype=params_dtype,
402
+ )
403
+
404
+ @staticmethod
405
+ def attention_mask_func(attention_scores, attention_mask):
406
+ attention_scores.masked_fill_(attention_mask, -10000.0)
407
+ return attention_scores
408
+
409
+ def split_tensor_along_last_dim(self, tensor, num_partitions,
410
+ contiguous_split_chunks=False):
411
+ """Split a tensor along its last dimension.
412
+ Arguments:
413
+ tensor: input tensor.
414
+ num_partitions: number of partitions to split the tensor
415
+ contiguous_split_chunks: If True, make each chunk contiguous
416
+ in memory.
417
+ """
418
+ # Get the size and dimension.
419
+ last_dim = tensor.dim() - 1
420
+ last_dim_size = tensor.size()[last_dim] // num_partitions
421
+ # Split.
422
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
423
+ # Note: torch.split does not create contiguous tensors by default.
424
+ if contiguous_split_chunks:
425
+ return tuple(chunk.contiguous() for chunk in tensor_list)
426
+
427
+ return tensor_list
428
+
429
+ def forward(
430
+ self,
431
+ hidden_states: torch.Tensor,
432
+ position_ids,
433
+ attention_mask: torch.Tensor,
434
+ layer_id,
435
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
436
+ use_cache: bool = False,
437
+ output_attentions: bool = False,
438
+ ):
439
+ """
440
+ hidden_states: [seq_len, batch, hidden_size]
441
+ attention_mask: [(1, 1), seq_len, seq_len]
442
+ """
443
+
444
+ # [seq_len, batch, 3 * hidden_size]
445
+ mixed_raw_layer = self.query_key_value(hidden_states)
446
+
447
+ # [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
448
+ new_tensor_shape = mixed_raw_layer.size()[:-1] + (
449
+ self.num_attention_heads_per_partition,
450
+ 3 * self.hidden_size_per_attention_head,
451
+ )
452
+ mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
453
+
454
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
455
+ (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
456
+
457
+ if self.position_encoding_2d:
458
+ q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
459
+ k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
460
+ cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
461
+ position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
462
+ position_ids[:, 1, :].transpose(0, 1).contiguous()
463
+ q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
464
+ q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
465
+ query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
466
+ key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
467
+ else:
468
+ position_ids = position_ids.transpose(0, 1)
469
+ cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
470
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
471
+ query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
472
+
473
+ # [seq_len, batch, hidden_size]
474
+ context_layer, present, attention_probs = attention_fn(
475
+ self=self,
476
+ query_layer=query_layer,
477
+ key_layer=key_layer,
478
+ value_layer=value_layer,
479
+ attention_mask=attention_mask,
480
+ hidden_size_per_partition=self.hidden_size_per_partition,
481
+ layer_id=layer_id,
482
+ layer_past=layer_past,
483
+ use_cache=use_cache
484
+ )
485
+
486
+ output = self.dense(context_layer)
487
+
488
+ outputs = (output, present)
489
+
490
+ if output_attentions:
491
+ outputs += (attention_probs,)
492
+
493
+ return outputs # output, present, attention_probs
494
+
495
+
496
+ class GEGLU(torch.nn.Module):
497
+ def __init__(self):
498
+ super().__init__()
499
+ self.activation_fn = F.gelu
500
+
501
+ def forward(self, x):
502
+ # dim=-1 breaks in jit for pt<1.10
503
+ x1, x2 = x.chunk(2, dim=(x.ndim - 1))
504
+ return x1 * self.activation_fn(x2)
505
+
506
+
507
+ class GLU(torch.nn.Module):
508
+ def __init__(self, hidden_size, inner_hidden_size=None,
509
+ layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
510
+ super(GLU, self).__init__()
511
+ if empty_init:
512
+ init_method = skip_init
513
+ else:
514
+ init_method = default_init
515
+ self.layer_id = layer_id
516
+ self.activation_func = activation_func
517
+
518
+ # Project to 4h.
519
+ self.hidden_size = hidden_size
520
+ if inner_hidden_size is None:
521
+ inner_hidden_size = 4 * hidden_size
522
+ self.inner_hidden_size = inner_hidden_size
523
+ self.dense_h_to_4h = init_method(
524
+ torch.nn.Linear,
525
+ self.hidden_size,
526
+ self.inner_hidden_size,
527
+ bias=bias,
528
+ dtype=params_dtype,
529
+ )
530
+ # Project back to h.
531
+ self.dense_4h_to_h = init_method(
532
+ torch.nn.Linear,
533
+ self.inner_hidden_size,
534
+ self.hidden_size,
535
+ bias=bias,
536
+ dtype=params_dtype,
537
+ )
538
+
539
+ def forward(self, hidden_states):
540
+ """
541
+ hidden_states: [seq_len, batch, hidden_size]
542
+ """
543
+
544
+ # [seq_len, batch, inner_hidden_size]
545
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
546
+
547
+ intermediate_parallel = self.activation_func(intermediate_parallel)
548
+
549
+ output = self.dense_4h_to_h(intermediate_parallel)
550
+
551
+ return output
552
+
553
+
554
+ class GLMBlock(torch.nn.Module):
555
+ def __init__(
556
+ self,
557
+ hidden_size,
558
+ num_attention_heads,
559
+ layernorm_epsilon,
560
+ layer_id,
561
+ inner_hidden_size=None,
562
+ hidden_size_per_attention_head=None,
563
+ layernorm=LayerNorm,
564
+ use_bias=True,
565
+ params_dtype=torch.float,
566
+ num_layers=28,
567
+ position_encoding_2d=True,
568
+ empty_init=True
569
+ ):
570
+ super(GLMBlock, self).__init__()
571
+ # Set output layer initialization if not provided.
572
+
573
+ self.layer_id = layer_id
574
+
575
+ # Layernorm on the input data.
576
+ self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
577
+
578
+ self.position_encoding_2d = position_encoding_2d
579
+
580
+ # Self attention.
581
+ self.attention = SelfAttention(
582
+ hidden_size,
583
+ num_attention_heads,
584
+ layer_id,
585
+ hidden_size_per_attention_head=hidden_size_per_attention_head,
586
+ bias=use_bias,
587
+ params_dtype=params_dtype,
588
+ position_encoding_2d=self.position_encoding_2d,
589
+ empty_init=empty_init
590
+ )
591
+
592
+ # Layernorm on the input data.
593
+ self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
594
+
595
+ self.num_layers = num_layers
596
+
597
+ # GLU
598
+ self.mlp = GLU(
599
+ hidden_size,
600
+ inner_hidden_size=inner_hidden_size,
601
+ bias=use_bias,
602
+ layer_id=layer_id,
603
+ params_dtype=params_dtype,
604
+ empty_init=empty_init
605
+ )
606
+
607
+ def forward(
608
+ self,
609
+ hidden_states: torch.Tensor,
610
+ position_ids,
611
+ attention_mask: torch.Tensor,
612
+ layer_id,
613
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
614
+ use_cache: bool = False,
615
+ output_attentions: bool = False,
616
+ ):
617
+ """
618
+ hidden_states: [seq_len, batch, hidden_size]
619
+ attention_mask: [(1, 1), seq_len, seq_len]
620
+ """
621
+
622
+ # Layer norm at the begining of the transformer layer.
623
+ # [seq_len, batch, hidden_size]
624
+ attention_input = self.input_layernorm(hidden_states)
625
+
626
+ # Self attention.
627
+ attention_outputs = self.attention(
628
+ attention_input,
629
+ position_ids,
630
+ attention_mask=attention_mask,
631
+ layer_id=layer_id,
632
+ layer_past=layer_past,
633
+ use_cache=use_cache,
634
+ output_attentions=output_attentions
635
+ )
636
+
637
+ attention_output = attention_outputs[0]
638
+
639
+ outputs = attention_outputs[1:]
640
+
641
+ # Residual connection.
642
+ alpha = (2 * self.num_layers) ** 0.5
643
+ hidden_states = attention_input * alpha + attention_output
644
+
645
+ mlp_input = self.post_attention_layernorm(hidden_states)
646
+
647
+ # MLP.
648
+ mlp_output = self.mlp(mlp_input)
649
+
650
+ # Second residual connection.
651
+ output = mlp_input * alpha + mlp_output
652
+
653
+ if use_cache:
654
+ outputs = (output,) + outputs
655
+ else:
656
+ outputs = (output,) + outputs[1:]
657
+
658
+ return outputs # hidden_states, present, attentions
659
+
660
+
661
+ class ChatGLMPreTrainedModel(PreTrainedModel):
662
+ """
663
+ An abstract class to handle weights initialization and
664
+ a simple interface for downloading and loading pretrained models.
665
+ """
666
+
667
+ is_parallelizable = False
668
+ supports_gradient_checkpointing = True
669
+ config_class = ChatGLMConfig
670
+ base_model_prefix = "transformer"
671
+ _no_split_modules = ["GLMBlock"]
672
+
673
+ def __init__(self, *inputs, **kwargs):
674
+ super().__init__(*inputs, **kwargs)
675
+
676
+ def _init_weights(self, module: nn.Module):
677
+ """Initialize the weights."""
678
+ return
679
+
680
+ def get_masks(self, input_ids, device):
681
+ batch_size, seq_length = input_ids.shape
682
+ context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
683
+ attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
684
+ attention_mask.tril_()
685
+ for i, context_length in enumerate(context_lengths):
686
+ attention_mask[i, :, :context_length] = 1
687
+ attention_mask.unsqueeze_(1)
688
+ attention_mask = (attention_mask < 0.5).bool()
689
+
690
+ return attention_mask
691
+
692
+ def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
693
+ batch_size, seq_length = input_ids.shape
694
+ if use_gmasks is None:
695
+ use_gmasks = [False] * batch_size
696
+ context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
697
+ if self.position_encoding_2d:
698
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
699
+ for i, context_length in enumerate(context_lengths):
700
+ position_ids[i, context_length:] = mask_positions[i]
701
+ block_position_ids = [torch.cat((
702
+ torch.zeros(context_length, dtype=torch.long, device=device),
703
+ torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
704
+ )) for context_length in context_lengths]
705
+ block_position_ids = torch.stack(block_position_ids, dim=0)
706
+ position_ids = torch.stack((position_ids, block_position_ids), dim=1)
707
+ else:
708
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
709
+ for i, context_length in enumerate(context_lengths):
710
+ if not use_gmasks[i]:
711
+ position_ids[i, context_length:] = mask_positions[i]
712
+
713
+ return position_ids
714
+
715
+ def _set_gradient_checkpointing(self, module, value=False):
716
+ if isinstance(module, ChatGLMModel):
717
+ module.gradient_checkpointing = value
718
+
719
+
720
+ CHATGLM_6B_START_DOCSTRING = r"""
721
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
722
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
723
+ usage and behavior.
724
+
725
+ Parameters:
726
+ config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
727
+ Initializing with a config file does not load the weights associated with the model, only the configuration.
728
+ Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
729
+ """
730
+
731
+ CHATGLM_6B_INPUTS_DOCSTRING = r"""
732
+ Args:
733
+ input_ids (`torch.LongTensor` of shape `({0})`):
734
+ Indices of input sequence tokens in the vocabulary.
735
+
736
+ Indices can be obtained using [`ChatGLM6BTokenizer`].
737
+ See [`PreTrainedTokenizer.encode`] and
738
+ [`PreTrainedTokenizer.__call__`] for details.
739
+
740
+ [What are input IDs?](../glossary#input-ids)
741
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
742
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
743
+
744
+ - 1 for tokens that are **not masked**,
745
+ - 0 for tokens that are **masked**.
746
+
747
+ [What are attention masks?](../glossary#attention-mask)
748
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
749
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
750
+
751
+ - 0 corresponds to a *sentence A* token,
752
+ - 1 corresponds to a *sentence B* token.
753
+
754
+ [What are token type IDs?](../glossary#token-type-ids)
755
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
756
+ Indices of positions of each input sequence tokens in the position embeddings.
757
+ Selected in the range `[0, config.max_position_embeddings - 1]`.
758
+
759
+ [What are position IDs?](../glossary#position-ids)
760
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
761
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
762
+
763
+ - 1 indicates the head is **not masked**,
764
+ - 0 indicates the head is **masked**.
765
+
766
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
767
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
768
+ This is useful if you want more control over how to convert *input_ids* indices into associated vectors
769
+ than the model's internal embedding lookup matrix.
770
+ output_attentions (`bool`, *optional*):
771
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
772
+ tensors for more detail.
773
+ output_hidden_states (`bool`, *optional*):
774
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
775
+ more detail.
776
+ return_dict (`bool`, *optional*):
777
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
778
+ """
779
+
780
+
781
+ @add_start_docstrings(
782
+ "The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
783
+ CHATGLM_6B_START_DOCSTRING,
784
+ )
785
+ class ChatGLMModel(ChatGLMPreTrainedModel):
786
+ """
787
+
788
+ The model can behave as an encoder (with only self-attention) as well
789
+ as a decoder, in which case a layer of cross-attention is added between
790
+ the self-attention layers, following the architecture described in [Attention is
791
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
792
+ Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
793
+
794
+ To behave as an decoder the model needs to be initialized with the
795
+ `is_decoder` argument of the configuration set to `True`.
796
+ To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
797
+ argument and `add_cross_attention` set to `True`; an
798
+ `encoder_hidden_states` is then expected as an input to the forward pass.
799
+ """
800
+
801
+ def __init__(self, config: ChatGLMConfig, empty_init=True):
802
+ super().__init__(config)
803
+ if empty_init:
804
+ init_method = skip_init
805
+ else:
806
+ init_method = default_init
807
+ # recording parameters
808
+ self.max_sequence_length = config.max_sequence_length
809
+ self.hidden_size = config.hidden_size
810
+ self.params_dtype = torch.half
811
+ self.num_attention_heads = config.num_attention_heads
812
+ self.vocab_size = config.vocab_size
813
+ self.num_layers = config.num_layers
814
+ self.layernorm_epsilon = config.layernorm_epsilon
815
+ self.inner_hidden_size = config.inner_hidden_size
816
+ self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
817
+ self.position_encoding_2d = config.position_encoding_2d
818
+ self.pre_seq_len = config.pre_seq_len
819
+ self.prefix_projection = config.prefix_projection
820
+
821
+ self.word_embeddings = init_method(
822
+ torch.nn.Embedding,
823
+ num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
824
+ dtype=self.params_dtype
825
+ )
826
+ self.gradient_checkpointing = False
827
+
828
+ def get_layer(layer_id):
829
+ return GLMBlock(
830
+ self.hidden_size,
831
+ self.num_attention_heads,
832
+ self.layernorm_epsilon,
833
+ layer_id,
834
+ inner_hidden_size=self.inner_hidden_size,
835
+ hidden_size_per_attention_head=self.hidden_size_per_attention_head,
836
+ layernorm=LayerNorm,
837
+ use_bias=True,
838
+ params_dtype=self.params_dtype,
839
+ position_encoding_2d=self.position_encoding_2d,
840
+ empty_init=empty_init
841
+ )
842
+
843
+ self.layers = torch.nn.ModuleList(
844
+ [get_layer(layer_id) for layer_id in range(self.num_layers)]
845
+ )
846
+
847
+ # Final layer norm before output.
848
+ self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
849
+
850
+ if self.pre_seq_len is not None:
851
+ for param in self.parameters():
852
+ param.requires_grad = False
853
+ self.prefix_tokens = torch.arange(self.pre_seq_len).long()
854
+ self.prefix_encoder = PrefixEncoder(config)
855
+ self.dropout = torch.nn.Dropout(0.1)
856
+
857
+ # total_params = sum(p.numel() for p in self.parameters())
858
+ # trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
859
+ # print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
860
+
861
+ def get_input_embeddings(self):
862
+ return self.word_embeddings
863
+
864
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
865
+ self.word_embeddings = new_embeddings
866
+
867
+ def get_prompt(self, batch_size, device, dtype=torch.half):
868
+ prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
869
+ past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
870
+ past_key_values = past_key_values.view(
871
+ batch_size,
872
+ self.pre_seq_len,
873
+ self.num_layers * 2,
874
+ self.num_attention_heads,
875
+ self.hidden_size // self.num_attention_heads
876
+ )
877
+ # seq_len, b, nh, hidden_size
878
+ past_key_values = self.dropout(past_key_values)
879
+ past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
880
+ # past_key_values = [(v[0], v[1]) for v in past_key_values]
881
+ return past_key_values
882
+
883
+ @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
884
+ @add_code_sample_docstrings(
885
+ checkpoint=_CHECKPOINT_FOR_DOC,
886
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
887
+ config_class=_CONFIG_FOR_DOC,
888
+ )
889
+ def forward(
890
+ self,
891
+ input_ids: Optional[torch.LongTensor] = None,
892
+ position_ids: Optional[torch.LongTensor] = None,
893
+ attention_mask: Optional[torch.Tensor] = None,
894
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
895
+ inputs_embeds: Optional[torch.LongTensor] = None,
896
+ use_cache: Optional[bool] = None,
897
+ output_attentions: Optional[bool] = None,
898
+ output_hidden_states: Optional[bool] = None,
899
+ return_dict: Optional[bool] = None,
900
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
901
+
902
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
903
+ output_hidden_states = (
904
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
905
+ )
906
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
907
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
908
+
909
+ if self.gradient_checkpointing and self.training:
910
+ if use_cache:
911
+ logger.warning_once(
912
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
913
+ )
914
+ use_cache = False
915
+
916
+ if input_ids is not None and inputs_embeds is not None:
917
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
918
+ elif input_ids is not None:
919
+ batch_size, seq_length = input_ids.shape[:2]
920
+ elif inputs_embeds is not None:
921
+ batch_size, seq_length = inputs_embeds.shape[:2]
922
+ else:
923
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
924
+
925
+ if inputs_embeds is None:
926
+ inputs_embeds = self.word_embeddings(input_ids)
927
+
928
+ if past_key_values is None:
929
+ if self.pre_seq_len is not None:
930
+ past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
931
+ dtype=inputs_embeds.dtype)
932
+ else:
933
+ past_key_values = tuple([None] * len(self.layers))
934
+
935
+ if attention_mask is None:
936
+ attention_mask = self.get_masks(
937
+ input_ids,
938
+ device=input_ids.device
939
+ )
940
+
941
+
942
+ if position_ids is None:
943
+ MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
944
+ seqs = input_ids.tolist()
945
+
946
+ mask_positions, use_gmasks = [], []
947
+ for seq in seqs:
948
+ mask_token = gMASK if gMASK in seq else MASK
949
+ use_gmask = mask_token == gMASK
950
+ mask_positions.append(seq.index(mask_token))
951
+ use_gmasks.append(use_gmask)
952
+
953
+ position_ids = self.get_position_ids(
954
+ input_ids,
955
+ mask_positions=mask_positions,
956
+ device=input_ids.device,
957
+ use_gmasks=use_gmasks
958
+ )
959
+
960
+ if self.pre_seq_len is not None and attention_mask is not None:
961
+ prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
962
+ attention_mask.device)
963
+ prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
964
+ attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
965
+
966
+ # [seq_len, batch, hidden_size]
967
+ hidden_states = inputs_embeds.transpose(0, 1)
968
+
969
+ presents = () if use_cache else None
970
+ all_self_attentions = () if output_attentions else None
971
+ all_hidden_states = () if output_hidden_states else None
972
+
973
+ if attention_mask is None:
974
+ attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
975
+ else:
976
+ attention_mask = attention_mask.to(hidden_states.device)
977
+
978
+ for i, layer in enumerate(self.layers):
979
+
980
+ if output_hidden_states:
981
+ all_hidden_states = all_hidden_states + (hidden_states,)
982
+ layer_past = past_key_values[i]
983
+
984
+ if self.gradient_checkpointing and self.training:
985
+ layer_ret = torch.utils.checkpoint.checkpoint(
986
+ layer,
987
+ hidden_states,
988
+ position_ids,
989
+ attention_mask,
990
+ torch.tensor(i),
991
+ layer_past,
992
+ use_cache,
993
+ output_attentions
994
+ )
995
+ else:
996
+ layer_ret = layer(
997
+ hidden_states,
998
+ position_ids=position_ids,
999
+ attention_mask=attention_mask,
1000
+ layer_id=torch.tensor(i),
1001
+ layer_past=layer_past,
1002
+ use_cache=use_cache,
1003
+ output_attentions=output_attentions
1004
+ )
1005
+
1006
+ hidden_states = layer_ret[0]
1007
+
1008
+ if use_cache:
1009
+ presents = presents + (layer_ret[1],)
1010
+
1011
+ if output_attentions:
1012
+ all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
1013
+
1014
+ # Final layer norm.
1015
+ hidden_states = self.final_layernorm(hidden_states)
1016
+
1017
+ if output_hidden_states:
1018
+ all_hidden_states = all_hidden_states + (hidden_states,)
1019
+
1020
+ if not return_dict:
1021
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
1022
+
1023
+ return BaseModelOutputWithPast(
1024
+ last_hidden_state=hidden_states,
1025
+ past_key_values=presents,
1026
+ hidden_states=all_hidden_states,
1027
+ attentions=all_self_attentions,
1028
+ )
1029
+
1030
+
1031
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
1032
+ def __init__(self, config: ChatGLMConfig, empty_init=True):
1033
+ super().__init__(config)
1034
+ if empty_init:
1035
+ init_method = skip_init
1036
+ else:
1037
+ init_method = default_init
1038
+
1039
+ # self.hidden_size = config.hidden_size
1040
+ # self.params_dtype = torch.half
1041
+ # self.vocab_size = config.vocab_size
1042
+ self.max_sequence_length = config.max_sequence_length
1043
+
1044
+ self.position_encoding_2d = config.position_encoding_2d
1045
+
1046
+ self.transformer = ChatGLMModel(config, empty_init=empty_init)
1047
+
1048
+ self.lm_head = init_method(
1049
+ nn.Linear,
1050
+ config.hidden_size,
1051
+ config.vocab_size,
1052
+ bias=False,
1053
+ dtype=torch.half
1054
+ )
1055
+
1056
+ self.config = config
1057
+
1058
+ self.quantized = False
1059
+
1060
+ if self.config.quantization_bit:
1061
+ self.quantize(self.config.quantization_bit, empty_init=True)
1062
+
1063
+ def get_output_embeddings(self):
1064
+ return self.lm_head
1065
+
1066
+ def set_output_embeddings(self, new_embeddings):
1067
+ self.lm_head = new_embeddings
1068
+
1069
+ def _update_model_kwargs_for_generation(
1070
+ self,
1071
+ outputs: ModelOutput,
1072
+ model_kwargs: Dict[str, Any],
1073
+ is_encoder_decoder: bool = False,
1074
+ standardize_cache_format: bool = False,
1075
+ ) -> Dict[str, Any]:
1076
+ # update past_key_values
1077
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
1078
+ outputs, standardize_cache_format=standardize_cache_format
1079
+ )
1080
+
1081
+ # update attention mask
1082
+ if "attention_mask" in model_kwargs:
1083
+ attention_mask = model_kwargs["attention_mask"]
1084
+ if attention_mask is not None and attention_mask.dtype == torch.bool:
1085
+ attention_mask = torch.cat(
1086
+ [attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3)
1087
+ new_attention_mask = attention_mask[:, :, -1:].clone()
1088
+ new_attention_mask[..., -1] = False
1089
+ model_kwargs["attention_mask"] = torch.cat(
1090
+ [attention_mask, new_attention_mask], dim=2
1091
+ )
1092
+
1093
+ # update position ids
1094
+ if "position_ids" in model_kwargs:
1095
+ position_ids = model_kwargs["position_ids"]
1096
+ new_position_id = position_ids[..., -1:].clone()
1097
+ new_position_id[:, 1, :] += 1
1098
+ model_kwargs["position_ids"] = torch.cat(
1099
+ [position_ids, new_position_id], dim=-1
1100
+ )
1101
+
1102
+ return model_kwargs
1103
+
1104
+ def prepare_inputs_for_generation(
1105
+ self,
1106
+ input_ids: torch.LongTensor,
1107
+ past: Optional[torch.Tensor] = None,
1108
+ past_key_values: Optional[torch.Tensor] = None,
1109
+ attention_mask: Optional[torch.Tensor] = None,
1110
+ position_ids: Optional[torch.Tensor] = None,
1111
+ **kwargs
1112
+ ) -> dict:
1113
+ batch_size, seq_length = input_ids.shape
1114
+ MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
1115
+ seqs = input_ids.tolist()
1116
+ mask_positions, use_gmasks = [], []
1117
+ for seq in seqs:
1118
+ mask_token = gMASK if gMASK in seq else MASK
1119
+ use_gmask = mask_token == gMASK
1120
+ mask_positions.append(seq.index(mask_token))
1121
+ use_gmasks.append(use_gmask)
1122
+
1123
+ # only last token for input_ids if past is not None
1124
+ if past is not None or past_key_values is not None:
1125
+ last_token = input_ids[:, -1].unsqueeze(-1)
1126
+ if attention_mask is not None and attention_mask.dtype == torch.bool:
1127
+ attention_mask = attention_mask[:, :, -1:]
1128
+ else:
1129
+ attention_mask = None
1130
+ if position_ids is not None:
1131
+ position_ids = position_ids[..., -1:]
1132
+ else:
1133
+ context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs]
1134
+ if self.position_encoding_2d:
1135
+ position_ids = torch.tensor(
1136
+ [[mask_position, seq_length - context_length] for mask_position, context_length in
1137
+ zip(mask_positions, context_lengths)], dtype=torch.long, device=input_ids.device).unsqueeze(-1)
1138
+ else:
1139
+ position_ids = torch.tensor([mask_position for mask_position in mask_positions], dtype=torch.long,
1140
+ device=input_ids.device).unsqueeze(-1)
1141
+
1142
+ if past is None:
1143
+ past = past_key_values
1144
+ return {
1145
+ "input_ids": last_token,
1146
+ "past_key_values": past,
1147
+ "position_ids": position_ids,
1148
+ "attention_mask": attention_mask
1149
+ }
1150
+ else:
1151
+ if attention_mask is not None and attention_mask.dtype != torch.bool:
1152
+ logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool")
1153
+ attention_mask = None
1154
+ if attention_mask is None:
1155
+ attention_mask = self.get_masks(
1156
+ input_ids,
1157
+ device=input_ids.device
1158
+ )
1159
+ if position_ids is None:
1160
+ position_ids = self.get_position_ids(
1161
+ input_ids,
1162
+ device=input_ids.device,
1163
+ mask_positions=mask_positions,
1164
+ use_gmasks=use_gmasks
1165
+ )
1166
+
1167
+ return {
1168
+ "input_ids": input_ids,
1169
+ "past_key_values": past,
1170
+ "position_ids": position_ids,
1171
+ "attention_mask": attention_mask
1172
+ }
1173
+
1174
+ def forward(
1175
+ self,
1176
+ input_ids: Optional[torch.Tensor] = None,
1177
+ position_ids: Optional[torch.Tensor] = None,
1178
+ attention_mask: Optional[torch.Tensor] = None,
1179
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
1180
+ inputs_embeds: Optional[torch.Tensor] = None,
1181
+ labels: Optional[torch.Tensor] = None,
1182
+ use_cache: Optional[bool] = None,
1183
+ output_attentions: Optional[bool] = None,
1184
+ output_hidden_states: Optional[bool] = None,
1185
+ return_dict: Optional[bool] = None,
1186
+ ):
1187
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1188
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1189
+
1190
+ transformer_outputs = self.transformer(
1191
+ input_ids=input_ids,
1192
+ position_ids=position_ids,
1193
+ attention_mask=attention_mask,
1194
+ past_key_values=past_key_values,
1195
+ inputs_embeds=inputs_embeds,
1196
+ use_cache=use_cache,
1197
+ output_attentions=output_attentions,
1198
+ output_hidden_states=output_hidden_states,
1199
+ return_dict=return_dict,
1200
+ )
1201
+
1202
+ hidden_states = transformer_outputs[0]
1203
+
1204
+ lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
1205
+
1206
+ loss = None
1207
+ if labels is not None:
1208
+ lm_logits = lm_logits.to(torch.float32)
1209
+
1210
+ # Shift so that tokens < n predict n
1211
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1212
+ shift_labels = labels[..., 1:].contiguous()
1213
+ # Flatten the tokens
1214
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1215
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1216
+
1217
+ lm_logits = lm_logits.to(hidden_states.dtype)
1218
+ loss = loss.to(hidden_states.dtype)
1219
+
1220
+ if not return_dict:
1221
+ output = (lm_logits,) + transformer_outputs[1:]
1222
+ return ((loss,) + output) if loss is not None else output
1223
+
1224
+ return CausalLMOutputWithPast(
1225
+ loss=loss,
1226
+ logits=lm_logits,
1227
+ past_key_values=transformer_outputs.past_key_values,
1228
+ hidden_states=transformer_outputs.hidden_states,
1229
+ attentions=transformer_outputs.attentions,
1230
+ )
1231
+
1232
+ @staticmethod
1233
+ def _reorder_cache(
1234
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1235
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1236
+ """
1237
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1238
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1239
+ beam_idx at every generation step.
1240
+
1241
+ Output shares the same memory storage as `past`.
1242
+ """
1243
+ return tuple(
1244
+ (
1245
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
1246
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
1247
+ )
1248
+ for layer_past in past
1249
+ )
1250
+
1251
+ def process_response(self, response):
1252
+ response = response.strip()
1253
+ response = response.replace("[[训练时间]]", "2023年")
1254
+ punkts = [
1255
+ [",", ","],
1256
+ ["!", "!"],
1257
+ [":", ":"],
1258
+ [";", ";"],
1259
+ ["\?", "?"],
1260
+ ]
1261
+ for item in punkts:
1262
+ response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
1263
+ response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
1264
+ return response
1265
+
1266
+ @torch.no_grad()
1267
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
1268
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1269
+ if history is None:
1270
+ history = []
1271
+ if logits_processor is None:
1272
+ logits_processor = LogitsProcessorList()
1273
+ logits_processor.append(InvalidScoreLogitsProcessor())
1274
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1275
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1276
+ if not history:
1277
+ prompt = query
1278
+ else:
1279
+ prompt = ""
1280
+ for i, (old_query, response) in enumerate(history):
1281
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1282
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1283
+ inputs = tokenizer([prompt], return_tensors="pt")
1284
+ inputs = inputs.to(self.device)
1285
+ outputs = self.generate(**inputs, **gen_kwargs)
1286
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1287
+ response = tokenizer.decode(outputs)
1288
+ response = self.process_response(response)
1289
+ history = history + [(query, response)]
1290
+ return response, history
1291
+
1292
+ @torch.no_grad()
1293
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
1294
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1295
+ if history is None:
1296
+ history = []
1297
+ if logits_processor is None:
1298
+ logits_processor = LogitsProcessorList()
1299
+ logits_processor.append(InvalidScoreLogitsProcessor())
1300
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1301
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1302
+ if not history:
1303
+ prompt = query
1304
+ else:
1305
+ prompt = ""
1306
+ for i, (old_query, response) in enumerate(history):
1307
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1308
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1309
+ inputs = tokenizer([prompt], return_tensors="pt")
1310
+ inputs = inputs.to(self.device)
1311
+ for outputs in self.stream_generate(**inputs, **gen_kwargs):
1312
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1313
+ response = tokenizer.decode(outputs)
1314
+ response = self.process_response(response)
1315
+ new_history = history + [(query, response)]
1316
+ yield response, new_history
1317
+
1318
+ @torch.no_grad()
1319
+ def stream_generate(
1320
+ self,
1321
+ input_ids,
1322
+ generation_config: Optional[GenerationConfig] = None,
1323
+ logits_processor: Optional[LogitsProcessorList] = None,
1324
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1325
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1326
+ **kwargs,
1327
+ ):
1328
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1329
+
1330
+ if generation_config is None:
1331
+ generation_config = self.generation_config
1332
+ generation_config = copy.deepcopy(generation_config)
1333
+ model_kwargs = generation_config.update(**kwargs)
1334
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1335
+
1336
+ if isinstance(eos_token_id, int):
1337
+ eos_token_id = [eos_token_id]
1338
+
1339
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1340
+ if has_default_max_length and generation_config.max_new_tokens is None:
1341
+ warnings.warn(
1342
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1343
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1344
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1345
+ UserWarning,
1346
+ )
1347
+ elif generation_config.max_new_tokens is not None:
1348
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1349
+ if not has_default_max_length:
1350
+ logger.warn(
1351
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1352
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1353
+ "Please refer to the documentation for more information. "
1354
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1355
+ UserWarning,
1356
+ )
1357
+
1358
+ if input_ids_seq_length >= generation_config.max_length:
1359
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1360
+ logger.warning(
1361
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1362
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1363
+ " increasing `max_new_tokens`."
1364
+ )
1365
+
1366
+ # 2. Set generation parameters if not already defined
1367
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1368
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1369
+
1370
+ logits_processor = self._get_logits_processor(
1371
+ generation_config=generation_config,
1372
+ input_ids_seq_length=input_ids_seq_length,
1373
+ encoder_input_ids=input_ids,
1374
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1375
+ logits_processor=logits_processor,
1376
+ )
1377
+
1378
+ stopping_criteria = self._get_stopping_criteria(
1379
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1380
+ )
1381
+ logits_warper = self._get_logits_warper(generation_config)
1382
+
1383
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1384
+ scores = None
1385
+ while True:
1386
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1387
+ # forward pass to get next token
1388
+ outputs = self(
1389
+ **model_inputs,
1390
+ return_dict=True,
1391
+ output_attentions=False,
1392
+ output_hidden_states=False,
1393
+ )
1394
+
1395
+ next_token_logits = outputs.logits[:, -1, :]
1396
+
1397
+ # pre-process distribution
1398
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1399
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1400
+
1401
+ # sample
1402
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1403
+ if generation_config.do_sample:
1404
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1405
+ else:
1406
+ next_tokens = torch.argmax(probs, dim=-1)
1407
+
1408
+ # update generated ids, model inputs, and length for next step
1409
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1410
+ model_kwargs = self._update_model_kwargs_for_generation(
1411
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1412
+ )
1413
+ unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
1414
+
1415
+ # stop when each sentence is finished, or if we exceed the maximum length
1416
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1417
+ break
1418
+ yield input_ids
1419
+
1420
+ def quantize(self, bits: int, empty_init=False, **kwargs):
1421
+ if bits == 0:
1422
+ return
1423
+
1424
+ from .quantization import quantize
1425
+
1426
+ if self.quantized:
1427
+ logger.info("Already quantized.")
1428
+ return self
1429
+
1430
+ self.quantized = True
1431
+
1432
+ self.config.quantization_bit = bits
1433
+
1434
+ self.transformer = quantize(self.transformer, bits, empty_init=empty_init, **kwargs)
1435
+ return self
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfd08e626d000591dbeb6a5b8d5ef6ea31ac34d127388da6fb6f62d69850e522
3
+ size 234882351
quantization.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn import Linear
2
+ from torch.nn.parameter import Parameter
3
+
4
+ import bz2
5
+ import torch
6
+ import base64
7
+ import ctypes
8
+ from transformers.utils import logging
9
+
10
+ from typing import List
11
+ from functools import partial
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+ try:
16
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
17
+
18
+ class Kernel:
19
+ def __init__(self, code: bytes, function_names: List[str]):
20
+ self.code = code
21
+ self._function_names = function_names
22
+ self._cmodule = LazyKernelCModule(self.code)
23
+
24
+ for name in self._function_names:
25
+ setattr(self, name, KernelFunction(self._cmodule, name))
26
+
27
+ quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
28
+
29
+ kernels = Kernel(
30
+ bz2.decompress(base64.b64decode(quantization_code)),
31
+ [
32
+ "int4WeightCompression",
33
+ "int4WeightExtractionFloat",
34
+ "int4WeightExtractionHalf",
35
+ "int8WeightExtractionFloat",
36
+ "int8WeightExtractionHalf",
37
+ ],
38
+ )
39
+ except Exception as exception:
40
+ kernels = None
41
+ logger.warning("Failed to load cpm_kernels:" + str(exception))
42
+
43
+
44
+ class W8A16Linear(torch.autograd.Function):
45
+ @staticmethod
46
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
47
+ ctx.inp_shape = inp.size()
48
+ ctx.weight_bit_width = weight_bit_width
49
+ out_features = quant_w.size(0)
50
+ inp = inp.contiguous().view(-1, inp.size(-1))
51
+ weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
52
+ ctx.weight_shape = weight.size()
53
+ output = inp.mm(weight.t())
54
+ ctx.save_for_backward(inp, quant_w, scale_w)
55
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
56
+
57
+ @staticmethod
58
+ def backward(ctx, grad_output: torch.Tensor):
59
+ inp, quant_w, scale_w = ctx.saved_tensors
60
+ weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
61
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
62
+ grad_input = grad_output.mm(weight)
63
+ grad_weight = grad_output.t().mm(inp)
64
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
65
+
66
+
67
+ def compress_int4_weight(weight: torch.Tensor): # (n, m)
68
+ with torch.cuda.device(weight.device):
69
+ n, m = weight.size(0), weight.size(1)
70
+ assert m % 2 == 0
71
+ m = m // 2
72
+ out = torch.empty(n, m, dtype=torch.int8, device="cuda")
73
+ stream = torch.cuda.current_stream()
74
+
75
+ gridDim = (n, 1, 1)
76
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
77
+
78
+ kernels.int4WeightCompression(
79
+ gridDim,
80
+ blockDim,
81
+ 0,
82
+ stream,
83
+ [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
84
+ )
85
+ return out
86
+
87
+
88
+ def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
89
+ if source_bit_width == 8:
90
+ func = kernels.int8WeightExtractionHalf
91
+ elif source_bit_width == 4:
92
+ func = kernels.int4WeightExtractionHalf
93
+ else:
94
+ assert False, "Unsupported bit-width"
95
+
96
+ with torch.cuda.device(weight.device):
97
+ n, m = weight.size(0), weight.size(1)
98
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
99
+ stream = torch.cuda.current_stream()
100
+
101
+ gridDim = (n, 1, 1)
102
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
103
+
104
+ func(
105
+ gridDim,
106
+ blockDim,
107
+ 0,
108
+ stream,
109
+ [
110
+ ctypes.c_void_p(weight.data_ptr()),
111
+ ctypes.c_void_p(scale_list.data_ptr()),
112
+ ctypes.c_void_p(out.data_ptr()),
113
+ ctypes.c_int32(n),
114
+ ctypes.c_int32(m),
115
+ ],
116
+ )
117
+ return out
118
+
119
+
120
+ class QuantizedLinear(Linear):
121
+ def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, empty_init=False, *args, **kwargs):
122
+ super(QuantizedLinear, self).__init__(*args, **kwargs)
123
+ self.weight_bit_width = weight_bit_width
124
+
125
+ shape = self.weight.shape
126
+ del self.weight
127
+
128
+ if weight_tensor is None or empty_init:
129
+ self.weight = torch.empty(
130
+ shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
131
+ )
132
+ self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
133
+ else:
134
+ self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
135
+ self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
136
+ if weight_bit_width == 4:
137
+ self.weight = compress_int4_weight(self.weight)
138
+
139
+ self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
140
+ self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
141
+ if bias_tensor is not None:
142
+ self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
143
+ else:
144
+ self.bias = None
145
+
146
+ def forward(self, input):
147
+ output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
148
+ if self.bias is not None:
149
+ output = output + self.bias
150
+ return output
151
+
152
+
153
+ def quantize(model, weight_bit_width, empty_init=False, **kwargs):
154
+ """Replace fp16 linear with quantized linear"""
155
+
156
+ for layer in model.layers:
157
+ layer.attention.query_key_value = QuantizedLinear(
158
+ weight_bit_width=weight_bit_width,
159
+ weight_tensor=layer.attention.query_key_value.weight.to(torch.cuda.current_device()),
160
+ bias_tensor=layer.attention.query_key_value.bias,
161
+ in_features=layer.attention.query_key_value.in_features,
162
+ out_features=layer.attention.query_key_value.out_features,
163
+ bias=True,
164
+ dtype=torch.half,
165
+ device=layer.attention.query_key_value.weight.device,
166
+ empty_init=empty_init
167
+ )
168
+ layer.attention.dense = QuantizedLinear(
169
+ weight_bit_width=weight_bit_width,
170
+ weight_tensor=layer.attention.dense.weight.to(torch.cuda.current_device()),
171
+ bias_tensor=layer.attention.dense.bias,
172
+ in_features=layer.attention.dense.in_features,
173
+ out_features=layer.attention.dense.out_features,
174
+ bias=True,
175
+ dtype=torch.half,
176
+ device=layer.attention.dense.weight.device,
177
+ empty_init=empty_init
178
+ )
179
+ layer.mlp.dense_h_to_4h = QuantizedLinear(
180
+ weight_bit_width=weight_bit_width,
181
+ weight_tensor=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
182
+ bias_tensor=layer.mlp.dense_h_to_4h.bias,
183
+ in_features=layer.mlp.dense_h_to_4h.in_features,
184
+ out_features=layer.mlp.dense_h_to_4h.out_features,
185
+ bias=True,
186
+ dtype=torch.half,
187
+ device=layer.mlp.dense_h_to_4h.weight.device,
188
+ empty_init=empty_init
189
+ )
190
+ layer.mlp.dense_4h_to_h = QuantizedLinear(
191
+ weight_bit_width=weight_bit_width,
192
+ weight_tensor=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
193
+ bias_tensor=layer.mlp.dense_4h_to_h.bias,
194
+ in_features=layer.mlp.dense_4h_to_h.in_features,
195
+ out_features=layer.mlp.dense_4h_to_h.out_features,
196
+ bias=True,
197
+ dtype=torch.half,
198
+ device=layer.mlp.dense_4h_to_h.weight.device,
199
+ empty_init=empty_init
200
+ )
201
+ return model
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67027cb672433d1214de68121bd10129a803fde088263894b6bf78f50a4d08ff
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19dbc8f7019cac9d3ee7c798287822e08804d989aa918bc97673afba099b8bd0
3
+ size 627
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<sop>",
3
+ "eos_token": "<eop>",
4
+ "mask_token": "[MASK]",
5
+ "pad_token": "<pad>",
6
+ "unk_token": "<unk>"
7
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tokenization classes for ChatGLM."""
2
+ from typing import List, Optional, Union
3
+ import os
4
+
5
+ from transformers.tokenization_utils import PreTrainedTokenizer
6
+ from transformers.utils import logging, PaddingStrategy
7
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
8
+ from typing import Dict
9
+ import sentencepiece as spm
10
+ import numpy as np
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
15
+ "THUDM/chatglm-6b": 2048,
16
+ }
17
+
18
+
19
+ class TextTokenizer:
20
+ def __init__(self, model_path):
21
+ self.sp = spm.SentencePieceProcessor()
22
+ self.sp.Load(model_path)
23
+ self.num_tokens = self.sp.vocab_size()
24
+
25
+ def encode(self, text):
26
+ return self.sp.EncodeAsIds(text)
27
+
28
+ def decode(self, ids: List[int]):
29
+ return self.sp.DecodeIds(ids)
30
+
31
+ def tokenize(self, text):
32
+ return self.sp.EncodeAsPieces(text)
33
+
34
+ def convert_tokens_to_string(self, tokens):
35
+ return self.sp.DecodePieces(tokens)
36
+
37
+ def convert_tokens_to_ids(self, tokens):
38
+ return [self.sp.PieceToId(token) for token in tokens]
39
+
40
+ def convert_token_to_id(self, token):
41
+ return self.sp.PieceToId(token)
42
+
43
+ def convert_id_to_token(self, idx):
44
+ return self.sp.IdToPiece(idx)
45
+
46
+ def __len__(self):
47
+ return self.num_tokens
48
+
49
+
50
+ class SPTokenizer:
51
+ def __init__(
52
+ self,
53
+ vocab_file,
54
+ num_image_tokens=20000,
55
+ max_blank_length=80,
56
+ byte_fallback=True,
57
+ ):
58
+ assert vocab_file is not None
59
+ self.vocab_file = vocab_file
60
+ self.num_image_tokens = num_image_tokens
61
+ self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
62
+ self.max_blank_length = max_blank_length
63
+ self.byte_fallback = byte_fallback
64
+ self.text_tokenizer = TextTokenizer(vocab_file)
65
+
66
+ def _get_text_tokenizer(self):
67
+ return self.text_tokenizer
68
+
69
+ @staticmethod
70
+ def get_blank_token(length: int):
71
+ assert length >= 2
72
+ return f"<|blank_{length}|>"
73
+
74
+ @staticmethod
75
+ def get_tab_token():
76
+ return f"<|tab|>"
77
+
78
+ @property
79
+ def num_text_tokens(self):
80
+ return self.text_tokenizer.num_tokens
81
+
82
+ @property
83
+ def num_tokens(self):
84
+ return self.num_image_tokens + self.num_text_tokens
85
+
86
+ @staticmethod
87
+ def _encode_whitespaces(text: str, max_len: int = 80):
88
+ text = text.replace("\t", SPTokenizer.get_tab_token())
89
+ for i in range(max_len, 1, -1):
90
+ text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
91
+ return text
92
+
93
+ def _preprocess(self, text: str, linebreak=True, whitespaces=True):
94
+ if linebreak:
95
+ text = text.replace("\n", "<n>")
96
+ if whitespaces:
97
+ text = self._encode_whitespaces(text, max_len=self.max_blank_length)
98
+ return text
99
+
100
+ def encode(
101
+ self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
102
+ ) -> List[int]:
103
+ """
104
+ @param text: Text to encode.
105
+ @param linebreak: Whether to encode newline (\n) in text.
106
+ @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
107
+ @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
108
+ @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
109
+ """
110
+ text = self._preprocess(text, linebreak, whitespaces)
111
+ if not add_dummy_prefix:
112
+ text = "<n>" + text
113
+ tmp = self._get_text_tokenizer().encode(text)
114
+ tokens = [x + self.num_image_tokens for x in tmp]
115
+ return tokens if add_dummy_prefix else tokens[2:]
116
+
117
+ def postprocess(self, text):
118
+ text = text.replace("<n>", "\n")
119
+ text = text.replace(SPTokenizer.get_tab_token(), "\t")
120
+ for i in range(2, self.max_blank_length + 1):
121
+ text = text.replace(self.get_blank_token(i), " " * i)
122
+ return text
123
+
124
+ def decode(self, text_ids: List[int]) -> str:
125
+ ids = [int(_id) - self.num_image_tokens for _id in text_ids]
126
+ ids = [_id for _id in ids if _id >= 0]
127
+ text = self._get_text_tokenizer().decode(ids)
128
+ text = self.postprocess(text)
129
+ return text
130
+
131
+ def decode_tokens(self, tokens: List[str]) -> str:
132
+ text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
133
+ text = self.postprocess(text)
134
+ return text
135
+
136
+ def tokenize(
137
+ self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
138
+ ) -> List[str]:
139
+ """
140
+ @param text: Text to encode.
141
+ @param linebreak: Whether to encode newline (\n) in text.
142
+ @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
143
+ @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
144
+ @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
145
+ """
146
+ text = self._preprocess(text, linebreak, whitespaces)
147
+ if not add_dummy_prefix:
148
+ text = "<n>" + text
149
+ tokens = self._get_text_tokenizer().tokenize(text)
150
+ return tokens if add_dummy_prefix else tokens[2:]
151
+
152
+ def __getitem__(self, x: Union[int, str]):
153
+ if isinstance(x, int):
154
+ if x < self.num_image_tokens:
155
+ return "<image_{}>".format(x)
156
+ else:
157
+ return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
158
+ elif isinstance(x, str):
159
+ if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
160
+ return int(x[7:-1])
161
+ else:
162
+ return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
163
+ else:
164
+ raise ValueError("The key should be str or int.")
165
+
166
+
167
+ class ChatGLMTokenizer(PreTrainedTokenizer):
168
+ """
169
+ Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
170
+
171
+ Args:
172
+ vocab_file (`str`):
173
+ Path to the vocabulary file.
174
+ """
175
+
176
+ vocab_files_names = {"vocab_file": "ice_text.model"}
177
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
178
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
179
+
180
+ def __init__(
181
+ self,
182
+ vocab_file,
183
+ do_lower_case=False,
184
+ remove_space=False,
185
+ bos_token='<sop>',
186
+ eos_token='<eop>',
187
+ end_token='</s>',
188
+ mask_token='[MASK]',
189
+ gmask_token='[gMASK]',
190
+ padding_side="left",
191
+ pad_token="<pad>",
192
+ unk_token="<unk>",
193
+ num_image_tokens=20000,
194
+ **kwargs
195
+ ) -> None:
196
+ super().__init__(
197
+ do_lower_case=do_lower_case,
198
+ remove_space=remove_space,
199
+ padding_side=padding_side,
200
+ bos_token=bos_token,
201
+ eos_token=eos_token,
202
+ end_token=end_token,
203
+ mask_token=mask_token,
204
+ gmask_token=gmask_token,
205
+ pad_token=pad_token,
206
+ unk_token=unk_token,
207
+ num_image_tokens=num_image_tokens,
208
+ **kwargs
209
+ )
210
+
211
+ self.do_lower_case = do_lower_case
212
+ self.remove_space = remove_space
213
+ self.vocab_file = vocab_file
214
+
215
+ self.bos_token = bos_token
216
+ self.eos_token = eos_token
217
+ self.end_token = end_token
218
+ self.mask_token = mask_token
219
+ self.gmask_token = gmask_token
220
+
221
+ self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
222
+
223
+ """ Initialisation """
224
+
225
+ @property
226
+ def gmask_token_id(self) -> Optional[int]:
227
+ if self.gmask_token is None:
228
+ return None
229
+ return self.convert_tokens_to_ids(self.gmask_token)
230
+
231
+ @property
232
+ def end_token_id(self) -> Optional[int]:
233
+ """
234
+ `Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
235
+ set.
236
+ """
237
+ if self.end_token is None:
238
+ return None
239
+ return self.convert_tokens_to_ids(self.end_token)
240
+
241
+ @property
242
+ def vocab_size(self):
243
+ """ Returns vocab size """
244
+ return self.sp_tokenizer.num_tokens
245
+
246
+ def get_vocab(self):
247
+ """ Returns vocab as a dict """
248
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
249
+ vocab.update(self.added_tokens_encoder)
250
+ return vocab
251
+
252
+ def preprocess_text(self, inputs):
253
+ if self.remove_space:
254
+ outputs = " ".join(inputs.strip().split())
255
+ else:
256
+ outputs = inputs
257
+
258
+ if self.do_lower_case:
259
+ outputs = outputs.lower()
260
+
261
+ return outputs
262
+
263
+ def _tokenize(self, text, **kwargs):
264
+ """ Returns a tokenized string. """
265
+ text = self.preprocess_text(text)
266
+
267
+ seq = self.sp_tokenizer.tokenize(text)
268
+
269
+ return seq
270
+
271
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
272
+ return self.sp_tokenizer.decode_tokens(tokens)
273
+
274
+ def _decode(
275
+ self,
276
+ token_ids: Union[int, List[int]],
277
+ **kwargs
278
+ ) -> str:
279
+ if isinstance(token_ids, int):
280
+ token_ids = [token_ids]
281
+ if len(token_ids) == 0:
282
+ return ""
283
+ if self.pad_token_id in token_ids: # remove pad
284
+ token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
285
+ return super()._decode(token_ids, **kwargs)
286
+
287
+ def _convert_token_to_id(self, token):
288
+ """ Converts a token (str) in an id using the vocab. """
289
+ return self.sp_tokenizer[token]
290
+
291
+ def _convert_id_to_token(self, index):
292
+ """Converts an index (integer) in a token (str) using the vocab."""
293
+ return self.sp_tokenizer[index]
294
+
295
+ def save_vocabulary(self, save_directory, filename_prefix=None):
296
+ """
297
+ Save the vocabulary and special tokens file to a directory.
298
+
299
+ Args:
300
+ save_directory (`str`):
301
+ The directory in which to save the vocabulary.
302
+ filename_prefix (`str`, *optional*):
303
+ An optional prefix to add to the named of the saved files.
304
+
305
+ Returns:
306
+ `Tuple(str)`: Paths to the files saved.
307
+ """
308
+ if os.path.isdir(save_directory):
309
+ vocab_file = os.path.join(
310
+ save_directory, self.vocab_files_names["vocab_file"]
311
+ )
312
+ else:
313
+ vocab_file = save_directory
314
+
315
+ with open(self.vocab_file, 'rb') as fin:
316
+ proto_str = fin.read()
317
+
318
+ with open(vocab_file, "wb") as writer:
319
+ writer.write(proto_str)
320
+
321
+ return (vocab_file,)
322
+
323
+ def build_inputs_with_special_tokens(
324
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
325
+ ) -> List[int]:
326
+ """
327
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
328
+ adding special tokens. A BERT sequence has the following format:
329
+
330
+ - single sequence: `[CLS] X [SEP]`
331
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
332
+
333
+ Args:
334
+ token_ids_0 (`List[int]`):
335
+ List of IDs to which the special tokens will be added.
336
+ token_ids_1 (`List[int]`, *optional*):
337
+ Optional second list of IDs for sequence pairs.
338
+
339
+ Returns:
340
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
341
+ """
342
+ gmask_id = self.sp_tokenizer[self.gmask_token]
343
+ eos_id = self.sp_tokenizer[self.eos_token]
344
+ token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
345
+ if token_ids_1 is not None:
346
+ token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
347
+ return token_ids_0
348
+
349
+ def _pad(
350
+ self,
351
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
352
+ max_length: Optional[int] = None,
353
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
354
+ pad_to_multiple_of: Optional[int] = None,
355
+ return_attention_mask: Optional[bool] = None,
356
+ ) -> dict:
357
+ """
358
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
359
+
360
+ Args:
361
+ encoded_inputs:
362
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
363
+ max_length: maximum length of the returned list and optionally padding length (see below).
364
+ Will truncate by taking into account the special tokens.
365
+ padding_strategy: PaddingStrategy to use for padding.
366
+
367
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
368
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
369
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
370
+ The tokenizer padding sides are defined in self.padding_side:
371
+
372
+ - 'left': pads on the left of the sequences
373
+ - 'right': pads on the right of the sequences
374
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
375
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
376
+ `>= 7.5` (Volta).
377
+ return_attention_mask:
378
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
379
+ """
380
+ # Load from model defaults
381
+ bos_token_id = self.sp_tokenizer[self.bos_token]
382
+ mask_token_id = self.sp_tokenizer[self.mask_token]
383
+ gmask_token_id = self.sp_tokenizer[self.gmask_token]
384
+ assert self.padding_side == "left"
385
+
386
+ required_input = encoded_inputs[self.model_input_names[0]]
387
+ seq_length = len(required_input)
388
+
389
+ if padding_strategy == PaddingStrategy.LONGEST:
390
+ max_length = len(required_input)
391
+
392
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
393
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
394
+
395
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
396
+
397
+ # Initialize attention mask if not present.
398
+ if max_length is not None:
399
+ if "attention_mask" not in encoded_inputs:
400
+ if bos_token_id in required_input:
401
+ context_length = required_input.index(bos_token_id)
402
+ else:
403
+ context_length = seq_length
404
+ attention_mask = np.ones((1, seq_length, seq_length))
405
+ attention_mask = np.tril(attention_mask)
406
+ attention_mask[:, :, :context_length] = 1
407
+ attention_mask = np.bool_(attention_mask < 0.5)
408
+ encoded_inputs["attention_mask"] = attention_mask
409
+
410
+ if "position_ids" not in encoded_inputs:
411
+ if bos_token_id in required_input:
412
+ context_length = required_input.index(bos_token_id)
413
+ else:
414
+ context_length = seq_length
415
+ position_ids = np.arange(seq_length, dtype=np.int64)
416
+ mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
417
+ if mask_token in required_input:
418
+ mask_position = required_input.index(mask_token)
419
+ position_ids[context_length:] = mask_position
420
+ block_position_ids = np.concatenate(
421
+ [np.zeros(context_length, dtype=np.int64),
422
+ np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
423
+ encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
424
+
425
+ if needs_to_be_padded:
426
+ difference = max_length - len(required_input)
427
+
428
+ if "attention_mask" in encoded_inputs:
429
+ encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
430
+ pad_width=[(0, 0), (difference, 0), (difference, 0)],
431
+ mode='constant', constant_values=True)
432
+ if "token_type_ids" in encoded_inputs:
433
+ encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
434
+ "token_type_ids"
435
+ ]
436
+ if "special_tokens_mask" in encoded_inputs:
437
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
438
+ if "position_ids" in encoded_inputs:
439
+ encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
440
+ pad_width=[(0, 0), (difference, 0)])
441
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
442
+
443
+ return encoded_inputs
tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_chatglm.ChatGLMTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": "<sop>",
9
+ "do_lower_case": false,
10
+ "end_token": "</s>",
11
+ "eos_token": "<eop>",
12
+ "gmask_token": "[gMASK]",
13
+ "mask_token": "[MASK]",
14
+ "model_max_length": 2048,
15
+ "num_image_tokens": 0,
16
+ "pad_token": "<pad>",
17
+ "padding_side": "left",
18
+ "remove_space": false,
19
+ "special_tokens_map_file": null,
20
+ "tokenizer_class": "ChatGLMTokenizer",
21
+ "unk_token": "<unk>"
22
+ }
trainer_state.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.006980802792321117,
5
+ "global_step": 50,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 0.016,
13
+ "loss": 5.6438,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 0.012,
19
+ "loss": 5.329,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 0.008,
25
+ "loss": 5.1696,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 0.004,
31
+ "loss": 5.0505,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 0.0,
37
+ "loss": 5.029,
38
+ "step": 50
39
+ }
40
+ ],
41
+ "max_steps": 50,
42
+ "num_train_epochs": 1,
43
+ "total_flos": 1733286061670400.0,
44
+ "trial_name": null,
45
+ "trial_params": null
46
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8c056ae071374df94daa668e18094abcd8a0846f99f864b65d6ca0749d9f7a8
3
+ size 3707