--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - google/xtreme metrics: - precision - recall - f1 - accuracy model-index: - name: mdeberta-v3-base-panx-wikiann-en results: - task: name: Token Classification type: token-classification dataset: name: google/xtreme PAN-X.en type: google/xtreme args: PAN-X.en metrics: - name: Precision type: precision value: 0.8285338502007477 - name: Recall type: recall value: 0.8461049059804892 - name: F1 type: f1 value: 0.8372271964185787 - name: Accuracy type: accuracy value: 0.9318317274262442 --- # mdeberta-v3-base-panx-wikiann-en This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the google/xtreme PAN-X.en dataset. It achieves the following results on the evaluation set: - Loss: 0.2520 - Precision: 0.8285 - Recall: 0.8461 - F1: 0.8372 - Accuracy: 0.9318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4565 | 1.0 | 625 | 0.2651 | 0.7942 | 0.8198 | 0.8068 | 0.9215 | | 0.2612 | 2.0 | 1250 | 0.2490 | 0.8043 | 0.8285 | 0.8162 | 0.9257 | | 0.2184 | 3.0 | 1875 | 0.2471 | 0.8175 | 0.8353 | 0.8263 | 0.9294 | | 0.1636 | 4.0 | 2500 | 0.2493 | 0.8195 | 0.8434 | 0.8313 | 0.9308 | | 0.1408 | 5.0 | 3125 | 0.2520 | 0.8285 | 0.8461 | 0.8372 | 0.9318 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1