Shrey-1329 commited on
Commit
3f05483
·
1 Parent(s): c06bd9a

first model upload(for deep rl course)

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 243.44 +/- 17.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f43a2b416c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f43a2b41750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f43a2b417e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f43a2b41870>", "_build": "<function ActorCriticPolicy._build at 0x7f43a2b41900>", "forward": "<function ActorCriticPolicy.forward at 0x7f43a2b41990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f43a2b41a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f43a2b41ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f43a2b41b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f43a2b41bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f43a2b41c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f43a2b41cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f434106e700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686583924935508162, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIANM71xTTK59EmDO0kNojh4khi6PVD3uQAAgD8AAIA/pomFvY/+X7q9lw686bK0NDGXl7rIFyq0AACAPwAAgD+admE9Kchmuv5zXTqcVjG1QXWIOx7ygbkAAIA/AACAPwDNwr17ZOU5ED5uOyGVZjhB4SK8vocbugAAgD8AAIA/Zj/jvPbYS7owDvY5mVEftfp76bpK8R60AACAPwAAgD+NB6C9ewqBur5DK7hLxhyzJJhpORTERzcAAIA/AACAP5o5zzx7NJC6YAIROHdnNjEDkRu7vXwltwAAgD8AAIA/M0NNPVyrV7pVB/C72lCOthcawjrhVAE2AACAPwAAgD8zHcI8KcB0uqYY5LrM9rK2Vgu1usKmIzYAAIA/AACAPwC9pbxVanw+5y4EvkKgir7PvLi8BZNsPAAAAAAAAAAAWnaHvUiRjLoduNi6bV31tYEa6zq1x/s5AACAPwAAgD8zIz2+n8QfP141aj3B8Y6+kOdKvIZg6jwAAAAAAAAAAE2Emb2u8a+6kJlWOvo6UjVgGAs5uGp1uQAAAAAAAIA/zVXhPPbIUrpHecY6YsFDtTQnhLsyW+S5AACAPwAAgD9znra9UpDXuYR0uboA3+g01zAXt6Ia1zkAAIA/AACAPzbTij6OMzE/lVlbvhffnL7dLLQ9xBYmvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEa/FaSs8yMAWyUTegDjAF0lEdAliU8YdhiLHV9lChoBkdAZOg8OCoS+WgHTegDaAhHQJYpMOqebut1fZQoaAZHQGEtVlXiiqRoB03oA2gIR0CWK3e18b71dX2UKGgGR0BifZ13dKukaAdN6ANoCEdAljD2g3974XV9lChoBkdAZVBrYXfqHGgHTegDaAhHQJYxgwYcebN1fZQoaAZHQGOwPgm7aqVoB03oA2gIR0CWOiWfseGPdX2UKGgGR0An2DA8B+4LaAdL+GgIR0CWP2Cp3os7dX2UKGgGR0Bmu2wTufEoaAdN6ANoCEdAlkAZkf9xZXV9lChoBkdAXws0BOpKjGgHTegDaAhHQJZXbVVghKV1fZQoaAZHQGUq4j8k2P1oB03oA2gIR0CWWM2/BWPtdX2UKGgGR0BgEQyfthNNaAdN6ANoCEdAllmbsOXmeXV9lChoBkdAXOFN21UlzGgHTegDaAhHQJZbrWe6I311fZQoaAZHQGHqLkbPyCpoB03oA2gIR0CWXeWZJCjUdX2UKGgGR0BlvYVZcLSeaAdN6ANoCEdAll7Tfm9xqHV9lChoBkdAZczakAPuomgHTegDaAhHQJZg4Suhbnp1fZQoaAZHQEUnL/0dzXBoB0vhaAhHQJZiVS1maph1fZQoaAZHQEgQRwIdELJoB0vbaAhHQJZppNGmUGF1fZQoaAZHQGSNw8GLUCtoB03oA2gIR0CWad1hb4ahdX2UKGgGR0Bvpuy/sVtXaAdNfAFoCEdAlmxQW8AaN3V9lChoBkdAZBGYaYNRWWgHTegDaAhHQJZuGZjQRf51fZQoaAZHQGUFb04BFNNoB03oA2gIR0CWb8jcEeQudX2UKGgGR0BiN+MIeHSGaAdN6ANoCEdAlnM2qPwNLHV9lChoBkdAXpNI9TxXn2gHTegDaAhHQJZ2Eg2ZRbd1fZQoaAZHQGK53lKbrkdoB03oA2gIR0CWf61f3N9qdX2UKGgGR0BxSEmkWRA9aAdN/wJoCEdAloD4QjD8+HV9lChoBkdAceA5paiblWgHTXoBaAhHQJaKpX+2mYV1fZQoaAZHQGdR9LQHAypoB03oA2gIR0CWjc5YYBNmdX2UKGgGR0BjqopvxYq5aAdN6ANoCEdAlpSmrjo6jnV9lChoBkdAX53JxNqQBGgHTegDaAhHQJaqPI7vG6x1fZQoaAZHQGM0H62v0RRoB03oA2gIR0CWrbfl6qsEdX2UKGgGR0BlG7MHKOktaAdN6ANoCEdAlrCFGgBcRnV9lChoBkdAZJyIBRyfc2gHTegDaAhHQJa0TXEqDsd1fZQoaAZHQHAK3bmEGqxoB02JAmgIR0CWtOAIppevdX2UKGgGR0BecOlsP8Q7aAdN6ANoCEdAlrYMx9G7SXV9lChoBkdAY7CyHEdeY2gHTegDaAhHQJa90cU/OdJ1fZQoaAZHQGMlaW5Yoy9oB03oA2gIR0CWvgh3JPqLdX2UKGgGR0BkH3PTodMkaAdN6ANoCEdAlsFLHhjvu3V9lChoBkdAYVwyiVSn+GgHTegDaAhHQJbGi79Q40d1fZQoaAZHQGvcz7l7tzFoB032AmgIR0CWz6KWszVMdX2UKGgGR0Bi144p+c6OaAdN6ANoCEdAltAWXkYGdXV9lChoBkdAYrEeqaPS2GgHTegDaAhHQJbXoDMeOn51fZQoaAZHQEP0KPXCj1xoB0vlaAhHQJbYXT3IuGt1fZQoaAZHQGHZ2606YE5oB03oA2gIR0CW2I5C4SYgdX2UKGgGR0BjAPLvCuU2aAdN6ANoCEdAluHu7L+xW3V9lChoBkdAY61FJg9eQmgHTegDaAhHQJbmfrLQokR1fZQoaAZHQGUfccU/OdJoB03oA2gIR0CW6vWkadc0dX2UKGgGR0BxLsgieNDMaAdNtQFoCEdAlusg/TsponV9lChoBkdAYOv8KG+K0mgHTegDaAhHQJb/ja7EpAl1fZQoaAZHQGM8CP6sQupoB03oA2gIR0CXAtFvQ4S6dX2UKGgGR0BwwtbzK9wnaAdNBANoCEdAlwPcW43FUHV9lChoBkdAYPcKQ7tAs2gHTegDaAhHQJcHQixFAml1fZQoaAZHQGMSR7JGOMloB03oA2gIR0CXB+7W/ag3dX2UKGgGR0BjiJ//echDaAdN6ANoCEdAlwltKIznBHV9lChoBkdAZKAte2NNrWgHTegDaAhHQJcRJG2Culp1fZQoaAZHQGQK2MKkVN5oB03oA2gIR0CXFAF3IMjNdX2UKGgGR0BmNUuzyBkJaAdN6ANoCEdAlx4yRnvlVHV9lChoBkdAaLiNFSbYsmgHTegDaAhHQJckrAgxJul1fZQoaAZHQGKF0O3DvVpoB03oA2gIR0CXJVZHd43WdX2UKGgGR0Bo9g2XLNfPaAdN6ANoCEdAlyWAh8pkPXV9lChoBkdAY0l2V3Ux22gHTegDaAhHQJctY3BHkLh1fZQoaAZHQHCZe0gKWs1oB00ZA2gIR0CXMQczqKP5dX2UKGgGR0BlC+1UlzEKaAdN6ANoCEdAlzFWPcSGrXV9lChoBkdAYWYd6sySFGgHTegDaAhHQJc2ZdonKGN1fZQoaAZHQGJsyntOVPhoB03oA2gIR0CXNp2Zy+6AdX2UKGgGR0BiRBkXk5p8aAdN6ANoCEdAl04/wAlv63V9lChoBkdAZvC27Wd3CGgHTegDaAhHQJdQkhMajvd1fZQoaAZHQGEkgiu+yqxoB03oA2gIR0CXU72wFC9idX2UKGgGR0Bkes8RtgrpaAdN6ANoCEdAl1Q6+evpyXV9lChoBkdAYjMaOxSpBGgHTegDaAhHQJdVSnqFAVx1fZQoaAZHQHBo850bLlpoB02SAWgIR0CXWuGM4tHydX2UKGgGR0Bl+WtjkMkQaAdN6ANoCEdAl1xSLAHminV9lChoBkdAYas8Zk0782gHTegDaAhHQJde6eGwiaB1fZQoaAZHQHA++QQtjCpoB01sAWgIR0CXaCg7o0Q9dX2UKGgGR0BeDdQj2SMcaAdN6ANoCEdAl2h9CNS62HV9lChoBkdAZBC1kUbkwWgHTegDaAhHQJdvSUkfLcN1fZQoaAZHQGQQp7TlT3toB03oA2gIR0CXcDJVKf4AdX2UKGgGR0Boe/225QP7aAdN6ANoCEdAl3Bt5MURF3V9lChoBkdAZeIfJV81GmgHTegDaAhHQJd89RVIZqF1fZQoaAZHQF2N8IRh+fBoB03oA2gIR0CXgrPTodMkdX2UKGgGR0BwwMlKK509aAdN3ANoCEdAl4coyO7xu3V9lChoBkdAYnQixmkFfWgHTegDaAhHQJeIGVSn+AF1fZQoaAZHQGUmcCo0hvBoB03oA2gIR0CXi5wS8J2MdX2UKGgGR0BkNybvw3HaaAdN6ANoCEdAl56daEBbOnV9lChoBkdAW/YrmQr+YWgHTegDaAhHQJeiRzRx95R1fZQoaAZHQGcv0ngHeJpoB03oA2gIR0CXotE9+w1SdX2UKGgGR0BRhn9ehPCVaAdL/2gIR0CXqvc7yQPqdX2UKGgGR0BowRaJQ+EAaAdN6ANoCEdAl6soM4LkS3V9lChoBkdAY30YGdI5HWgHTegDaAhHQJetadTYNAl1fZQoaAZHQGSMaGgzxgBoB03oA2gIR0CXsUiiItUXdX2UKGgGR0BuiX8n/kvLaAdNgwFoCEdAl7kTu0CzTnV9lChoBkdAYeVrFfiPyWgHTegDaAhHQJe9sMuvllt1fZQoaAZHQGdvbhFVktpoB03oA2gIR0CXvgVj7Q9idX2UKGgGR0Bykj3BYV7AaAdN8AJoCEdAl788Lronr3V9lChoBkdAcgNxxDLKWGgHTTABaAhHQJfAak/KQq91fZQoaAZHQGLbyb6P8yhoB03oA2gIR0CXw3+XJHRUdX2UKGgGR0BkYvr+o99uaAdN6ANoCEdAl8QIlUp/gHV9lChoBkdAY8/rv9cbBGgHTegDaAhHQJfELPSlWOp1fZQoaAZHQGHnJk5IYm9oB03oA2gIR0CXz0schkiEdX2UKGgGR0BlE+QKa5PNaAdN6ANoCEdAl9NGKQ7tA3V9lChoBkdAXimTRplBhWgHTegDaAhHQJfUKmDUVi51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
lander-inator-3000.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7ae33919b5f8a6f33238a9ad3036ed0e8ec2e2e3511cc53ef0d387204f4d8d
3
+ size 146751
lander-inator-3000/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
lander-inator-3000/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f43a2b416c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f43a2b41750>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f43a2b417e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f43a2b41870>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f43a2b41900>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f43a2b41990>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f43a2b41a20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f43a2b41ab0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f43a2b41b40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f43a2b41bd0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f43a2b41c60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f43a2b41cf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f434106e700>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1686583924935508162,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIANM71xTTK59EmDO0kNojh4khi6PVD3uQAAgD8AAIA/pomFvY/+X7q9lw686bK0NDGXl7rIFyq0AACAPwAAgD+admE9Kchmuv5zXTqcVjG1QXWIOx7ygbkAAIA/AACAPwDNwr17ZOU5ED5uOyGVZjhB4SK8vocbugAAgD8AAIA/Zj/jvPbYS7owDvY5mVEftfp76bpK8R60AACAPwAAgD+NB6C9ewqBur5DK7hLxhyzJJhpORTERzcAAIA/AACAP5o5zzx7NJC6YAIROHdnNjEDkRu7vXwltwAAgD8AAIA/M0NNPVyrV7pVB/C72lCOthcawjrhVAE2AACAPwAAgD8zHcI8KcB0uqYY5LrM9rK2Vgu1usKmIzYAAIA/AACAPwC9pbxVanw+5y4EvkKgir7PvLi8BZNsPAAAAAAAAAAAWnaHvUiRjLoduNi6bV31tYEa6zq1x/s5AACAPwAAgD8zIz2+n8QfP141aj3B8Y6+kOdKvIZg6jwAAAAAAAAAAE2Emb2u8a+6kJlWOvo6UjVgGAs5uGp1uQAAAAAAAIA/zVXhPPbIUrpHecY6YsFDtTQnhLsyW+S5AACAPwAAgD9znra9UpDXuYR0uboA3+g01zAXt6Ia1zkAAIA/AACAPzbTij6OMzE/lVlbvhffnL7dLLQ9xBYmvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEa/FaSs8yMAWyUTegDjAF0lEdAliU8YdhiLHV9lChoBkdAZOg8OCoS+WgHTegDaAhHQJYpMOqebut1fZQoaAZHQGEtVlXiiqRoB03oA2gIR0CWK3e18b71dX2UKGgGR0BifZ13dKukaAdN6ANoCEdAljD2g3974XV9lChoBkdAZVBrYXfqHGgHTegDaAhHQJYxgwYcebN1fZQoaAZHQGOwPgm7aqVoB03oA2gIR0CWOiWfseGPdX2UKGgGR0An2DA8B+4LaAdL+GgIR0CWP2Cp3os7dX2UKGgGR0Bmu2wTufEoaAdN6ANoCEdAlkAZkf9xZXV9lChoBkdAXws0BOpKjGgHTegDaAhHQJZXbVVghKV1fZQoaAZHQGUq4j8k2P1oB03oA2gIR0CWWM2/BWPtdX2UKGgGR0BgEQyfthNNaAdN6ANoCEdAllmbsOXmeXV9lChoBkdAXOFN21UlzGgHTegDaAhHQJZbrWe6I311fZQoaAZHQGHqLkbPyCpoB03oA2gIR0CWXeWZJCjUdX2UKGgGR0BlvYVZcLSeaAdN6ANoCEdAll7Tfm9xqHV9lChoBkdAZczakAPuomgHTegDaAhHQJZg4Suhbnp1fZQoaAZHQEUnL/0dzXBoB0vhaAhHQJZiVS1maph1fZQoaAZHQEgQRwIdELJoB0vbaAhHQJZppNGmUGF1fZQoaAZHQGSNw8GLUCtoB03oA2gIR0CWad1hb4ahdX2UKGgGR0Bvpuy/sVtXaAdNfAFoCEdAlmxQW8AaN3V9lChoBkdAZBGYaYNRWWgHTegDaAhHQJZuGZjQRf51fZQoaAZHQGUFb04BFNNoB03oA2gIR0CWb8jcEeQudX2UKGgGR0BiN+MIeHSGaAdN6ANoCEdAlnM2qPwNLHV9lChoBkdAXpNI9TxXn2gHTegDaAhHQJZ2Eg2ZRbd1fZQoaAZHQGK53lKbrkdoB03oA2gIR0CWf61f3N9qdX2UKGgGR0BxSEmkWRA9aAdN/wJoCEdAloD4QjD8+HV9lChoBkdAceA5paiblWgHTXoBaAhHQJaKpX+2mYV1fZQoaAZHQGdR9LQHAypoB03oA2gIR0CWjc5YYBNmdX2UKGgGR0BjqopvxYq5aAdN6ANoCEdAlpSmrjo6jnV9lChoBkdAX53JxNqQBGgHTegDaAhHQJaqPI7vG6x1fZQoaAZHQGM0H62v0RRoB03oA2gIR0CWrbfl6qsEdX2UKGgGR0BlG7MHKOktaAdN6ANoCEdAlrCFGgBcRnV9lChoBkdAZJyIBRyfc2gHTegDaAhHQJa0TXEqDsd1fZQoaAZHQHAK3bmEGqxoB02JAmgIR0CWtOAIppevdX2UKGgGR0BecOlsP8Q7aAdN6ANoCEdAlrYMx9G7SXV9lChoBkdAY7CyHEdeY2gHTegDaAhHQJa90cU/OdJ1fZQoaAZHQGMlaW5Yoy9oB03oA2gIR0CWvgh3JPqLdX2UKGgGR0BkH3PTodMkaAdN6ANoCEdAlsFLHhjvu3V9lChoBkdAYVwyiVSn+GgHTegDaAhHQJbGi79Q40d1fZQoaAZHQGvcz7l7tzFoB032AmgIR0CWz6KWszVMdX2UKGgGR0Bi144p+c6OaAdN6ANoCEdAltAWXkYGdXV9lChoBkdAYrEeqaPS2GgHTegDaAhHQJbXoDMeOn51fZQoaAZHQEP0KPXCj1xoB0vlaAhHQJbYXT3IuGt1fZQoaAZHQGHZ2606YE5oB03oA2gIR0CW2I5C4SYgdX2UKGgGR0BjAPLvCuU2aAdN6ANoCEdAluHu7L+xW3V9lChoBkdAY61FJg9eQmgHTegDaAhHQJbmfrLQokR1fZQoaAZHQGUfccU/OdJoB03oA2gIR0CW6vWkadc0dX2UKGgGR0BxLsgieNDMaAdNtQFoCEdAlusg/TsponV9lChoBkdAYOv8KG+K0mgHTegDaAhHQJb/ja7EpAl1fZQoaAZHQGM8CP6sQupoB03oA2gIR0CXAtFvQ4S6dX2UKGgGR0BwwtbzK9wnaAdNBANoCEdAlwPcW43FUHV9lChoBkdAYPcKQ7tAs2gHTegDaAhHQJcHQixFAml1fZQoaAZHQGMSR7JGOMloB03oA2gIR0CXB+7W/ag3dX2UKGgGR0BjiJ//echDaAdN6ANoCEdAlwltKIznBHV9lChoBkdAZKAte2NNrWgHTegDaAhHQJcRJG2Culp1fZQoaAZHQGQK2MKkVN5oB03oA2gIR0CXFAF3IMjNdX2UKGgGR0BmNUuzyBkJaAdN6ANoCEdAlx4yRnvlVHV9lChoBkdAaLiNFSbYsmgHTegDaAhHQJckrAgxJul1fZQoaAZHQGKF0O3DvVpoB03oA2gIR0CXJVZHd43WdX2UKGgGR0Bo9g2XLNfPaAdN6ANoCEdAlyWAh8pkPXV9lChoBkdAY0l2V3Ux22gHTegDaAhHQJctY3BHkLh1fZQoaAZHQHCZe0gKWs1oB00ZA2gIR0CXMQczqKP5dX2UKGgGR0BlC+1UlzEKaAdN6ANoCEdAlzFWPcSGrXV9lChoBkdAYWYd6sySFGgHTegDaAhHQJc2ZdonKGN1fZQoaAZHQGJsyntOVPhoB03oA2gIR0CXNp2Zy+6AdX2UKGgGR0BiRBkXk5p8aAdN6ANoCEdAl04/wAlv63V9lChoBkdAZvC27Wd3CGgHTegDaAhHQJdQkhMajvd1fZQoaAZHQGEkgiu+yqxoB03oA2gIR0CXU72wFC9idX2UKGgGR0Bkes8RtgrpaAdN6ANoCEdAl1Q6+evpyXV9lChoBkdAYjMaOxSpBGgHTegDaAhHQJdVSnqFAVx1fZQoaAZHQHBo850bLlpoB02SAWgIR0CXWuGM4tHydX2UKGgGR0Bl+WtjkMkQaAdN6ANoCEdAl1xSLAHminV9lChoBkdAYas8Zk0782gHTegDaAhHQJde6eGwiaB1fZQoaAZHQHA++QQtjCpoB01sAWgIR0CXaCg7o0Q9dX2UKGgGR0BeDdQj2SMcaAdN6ANoCEdAl2h9CNS62HV9lChoBkdAZBC1kUbkwWgHTegDaAhHQJdvSUkfLcN1fZQoaAZHQGQQp7TlT3toB03oA2gIR0CXcDJVKf4AdX2UKGgGR0Boe/225QP7aAdN6ANoCEdAl3Bt5MURF3V9lChoBkdAZeIfJV81GmgHTegDaAhHQJd89RVIZqF1fZQoaAZHQF2N8IRh+fBoB03oA2gIR0CXgrPTodMkdX2UKGgGR0BwwMlKK509aAdN3ANoCEdAl4coyO7xu3V9lChoBkdAYnQixmkFfWgHTegDaAhHQJeIGVSn+AF1fZQoaAZHQGUmcCo0hvBoB03oA2gIR0CXi5wS8J2MdX2UKGgGR0BkNybvw3HaaAdN6ANoCEdAl56daEBbOnV9lChoBkdAW/YrmQr+YWgHTegDaAhHQJeiRzRx95R1fZQoaAZHQGcv0ngHeJpoB03oA2gIR0CXotE9+w1SdX2UKGgGR0BRhn9ehPCVaAdL/2gIR0CXqvc7yQPqdX2UKGgGR0BowRaJQ+EAaAdN6ANoCEdAl6soM4LkS3V9lChoBkdAY30YGdI5HWgHTegDaAhHQJetadTYNAl1fZQoaAZHQGSMaGgzxgBoB03oA2gIR0CXsUiiItUXdX2UKGgGR0BuiX8n/kvLaAdNgwFoCEdAl7kTu0CzTnV9lChoBkdAYeVrFfiPyWgHTegDaAhHQJe9sMuvllt1fZQoaAZHQGdvbhFVktpoB03oA2gIR0CXvgVj7Q9idX2UKGgGR0Bykj3BYV7AaAdN8AJoCEdAl788Lronr3V9lChoBkdAcgNxxDLKWGgHTTABaAhHQJfAak/KQq91fZQoaAZHQGLbyb6P8yhoB03oA2gIR0CXw3+XJHRUdX2UKGgGR0BkYvr+o99uaAdN6ANoCEdAl8QIlUp/gHV9lChoBkdAY8/rv9cbBGgHTegDaAhHQJfELPSlWOp1fZQoaAZHQGHnJk5IYm9oB03oA2gIR0CXz0schkiEdX2UKGgGR0BlE+QKa5PNaAdN6ANoCEdAl9NGKQ7tA3V9lChoBkdAXimTRplBhWgHTegDaAhHQJfUKmDUVi51ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
lander-inator-3000/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b15e55380ad983f810e27839985d4cd17d5a387ce4a6df6b28d00706d77be695
3
+ size 87929
lander-inator-3000/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94a31accec2b2ff5148392bb71c7af78680d72422b19987d8069180ca14a7b03
3
+ size 43329
lander-inator-3000/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lander-inator-3000/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (176 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 243.44203279999996, "std_reward": 17.693240679607765, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-12T15:57:01.207931"}