ShreyasM commited on
Commit
69b2aac
·
1 Parent(s): 7bc8875

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Walker2DBulletEnv-v0
16
+ type: Walker2DBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 618.63 +/- 6.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **Walker2DBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **Walker2DBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63c4c70eb0e72542ab75fd355500b09426ac4d1922cb270d17c70f061863e3e8
3
+ size 117476
a2c-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6db1e44c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6db1e44ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6db1e44d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6db1e44dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6db1e44e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6db1e44ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6db1e44f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6db1e47040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6db1e470d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6db1e47160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6db1e471f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6db1e47280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6db1e463c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "observation_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 22
39
+ ],
40
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
41
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
42
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
43
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
44
+ "_np_random": null
45
+ },
46
+ "action_space": {
47
+ ":type:": "<class 'gym.spaces.box.Box'>",
48
+ ":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
49
+ "dtype": "float32",
50
+ "_shape": [
51
+ 6
52
+ ],
53
+ "low": "[-1. -1. -1. -1. -1. -1.]",
54
+ "high": "[1. 1. 1. 1. 1. 1.]",
55
+ "bounded_below": "[ True True True True True True]",
56
+ "bounded_above": "[ True True True True True True]",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 4,
60
+ "num_timesteps": 155000,
61
+ "_total_timesteps": 155000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1679527196790909877,
66
+ "learning_rate": 0.001,
67
+ "tensorboard_log": "value_loss",
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAM45CT0AAAAA7rrLNg7QE74AAAAAsgwxPgAAAIDZ/M8+1DgxvytP8T2TOhe+OMWkPeGN7Dw9k7S9z38CPu9U4j0tEJG+mKKuPZOYBb4RmbW9Mz5IPnsATT7S5VC/AAAAAO66yzZ61Nu9AAAAAPtTKD4AAACAWx1iP9Y/B7+KmtM9vk8Xvq6upj0PyA0/+U6evdpKAT6V7OQ9ssErQOvDez3OEDG/yiRNvjM+SD57AE0+6A62PQAAAADuuss2u9e+vQAAAADnJSo+AAAAgJyrpD6pcJu+mbjDPF4yF75ru6I9NjlqPZw7lr0h0tU9+X8gvplRjr78EyA/xosvvm97c74zPkg+ewBNPjPf1D0AAAAA7rrLNgcKC74AAAAAffQvPgAAAIDhk5w+OIo5vlRQwD1WCRe+pfamPXcpOj1g67e9iKQBPn555j2/VJG+OR8OPISgOr6pTHC9Mz5IPnsATT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVdGIPwAAAACpDYg/AAAAAFRO1TwAAAAAitx+PwAAAAD824M/AAAAAKDwSr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGlvbj8AAAAABuiDPwAAAACe3pu9AAAAAAYWiD8AAAAARXR7PwAAAACcoHi9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICcf4c/AAAAAOaceT8AAAAAR1LFPQAAAAAVRIg/AAAAANAXhD8AAAAAMg9iOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaJR3PwAAAADKSG0/AAAAADvXxr0AAAAABJSFPwAAAAACI3g/AAAAACuct70AAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"
83
+ },
84
+ "_episode_num": 0,
85
+ "use_sde": false,
86
+ "sde_sample_freq": -1,
87
+ "_current_progress_remaining": 0.0,
88
+ "ep_info_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH/BNZNfw7WMAWyUTegDjAF0lEdAZkV4NZvDQHV9lChoBkdAf8dnrpqynmgHTegDaAhHQGZN052hZhd1fZQoaAZHQEQ8/k/8l5ZoB0tQaAhHQGZdcHGCI1t1fZQoaAZHQCsebTc6/7BoB0sUaAhHQGZhVdHDrJN1fZQoaAZHQCfoNwzch1VoB0sVaAhHQGZlVwHZ9NN1fZQoaAZHQFZknQ6ZH/doB0v+aAhHQGZ3d+ocaOx1fZQoaAZHQH+005uIhyNoB03oA2gIR0BmiLWK/EfldX2UKGgGR0B/3Sez2OABaAdN6ANoCEdAZq4fvF3pwHV9lChoBkdATMHgNwzch2gHS1poCEdAZsE4aP0ZnHV9lChoBkdAgAZCgK4QSWgHTegDaAhHQGcrMIVuaWp1fZQoaAZHQIAE3RsuWbBoB03oA2gIR0BnO+JWNm16dX2UKGgGR0B9sJGDtgKGaAdNpANoCEdAZz52+PBBRnV9lChoBkdAgADvvBrN4mgHTegDaAhHQGd/vw3HaOB1fZQoaAZHQIH48JfICEJoB03oA2gIR0Bn6jeXRgJDdX2UKGgGR0CAAcGO+7DmaAdN6ANoCEdAZ/sRZEDyOXV9lChoBkdAgAlMUh3aBmgHTegDaAhHQGf9lVktmL91fZQoaAZHQHwtLhNucc5oB00XA2gIR0BoGNu5z5oHdX2UKGgGR0BWGiuloDgZaAdL4mgIR0BoRlymygPFdX2UKGgGR0BU4JR8+iaiaAdLlmgIR0BoYy48U21ldX2UKGgGR0BFGryMDOkdaAdLO2gIR0Bobh+DvmYCdX2UKGgGR0BHmpWFN+LFaAdLVGgIR0Bofj5uZThpdX2UKGgGR0Azig3974SIaAdLOGgIR0BoiOaDwpfAdX2UKGgGR0B5REXbdrO8aAdN/wJoCEdAaJQtxuKoAHV9lChoBkdAgrE3BYV6/2gHTegDaAhHQGitfapPykN1fZQoaAZHQIKS2Myad+ZoB03oA2gIR0BovlTkyULVdX2UKGgGR0BQWCvTw2ETaAdLZWgIR0Bo0anWJ79idX2UKGgGR0BPCnxz7uUmaAdLamgIR0Bo5aaLGaQWdX2UKGgGR0CBNVWkrPMTaAdN6ANoCEdAaUew0waisXV9lChoBkdAgYnpI1+AmWgHTegDaAhHQGlS+WOZLIx1fZQoaAZHQIG83fGdZq5oB03oA2gIR0Bpa+QIUrTZdX2UKGgGR0CCc9rX18LKaAdN6ANoCEdAaaV0aIeo1nV9lChoBkdAgWwHjABT42gHTegDaAhHQGoKeS8rZrZ1fZQoaAZHQILKRUYKpkxoB03oA2gIR0BqFa4z7/GVdX2UKGgGR0CCm0VbA1vVaAdN6ANoCEdAai43zcynDXV9lChoBkdAgiKETYdyUGgHTegDaAhHQGplyP2f0291fZQoaAZHQIKJmnwXqJNoB03oA2gIR0Bqxbn3cpLFdX2UKGgGR0CCuqZP2wmmaAdN6ANoCEdAatEL9/BnBnV9lChoBkdAgsqHdfsu4GgHTegDaAhHQGrpaiblRxd1fZQoaAZHQIMAeNxVAA1oB03oA2gIR0BrIP9itq59dX2UKGgGR0BGhU1IiC8OaAdLPWgIR0BrLYYixFAndX2UKGgGR0CCv0fBeokzaAdN6ANoCEdAa4T0nw5NoXV9lChoBkdAgp0v5xiobWgHTegDaAhHQGuQnmig00p1fZQoaAZHQIJ9QazeGfxoB03oA2gIR0BrqSPyTY/WdX2UKGgGR0CCVoebutwKaAdN6ANoCEdAa+wX1J17pnV9lChoBkdAgeMvVd5Y5mgHTegDaAhHQGxCQXyiEg51fZQoaAZHQILgWWIGhVVoB03oA2gIR0BsTUdeY2KmdX2UKGgGR0CDCBNEgGKRaAdN6ANoCEdAbGVvkzXSSnV9lChoBkdAgp2Ma86FNGgHTegDaAhHQGynJv5xiod1fZQoaAZHQII22LBKtgdoB03oA2gIR0BtAKqyWzF/dX2UKGgGR0CCssEbo8p1aAdN6ANoCEdAbQuhbGFSKnV9lChoBkdAgrWFB6a9b2gHTegDaAhHQG0kLjo6jnF1fZQoaAZHQGo8nlwLmZFoB01LAWgIR0BtYrTUiILxdX2UKGgGR0CC/SZx7zClaAdN6ANoCEdAbWedfb9IgHV9lChoBkdASATdJrcj7mgHS5FoCEdAbX3oBaLXMHV9lChoBkdAgt7Ne+mFamgHTegDaAhHQG28MFdLQHB1fZQoaAZHQILg3k7wKBxoB03oA2gIR0Btx21v2oNvdX2UKGgGR0CC3Y0Nz8xcaAdN6ANoCEdAbiKKsuFpPHV9lChoBkdAgj0yyUs4DWgHTegDaAhHQG45xt52Qnx1fZQoaAZHQIKOgBkqc3FoB03oA2gIR0Bue4LgGbCrdX2UKGgGR0CC5mll9SdfaAdN6ANoCEdAboculoDgZXV9lChoBkdAV//4Hoouw2gHS5FoCEdAbqKSDh99dHV9lChoBkdAgMvIHC4z8GgHTegDaAhHQG7iCyprDZV1fZQoaAZHQIHaLeqJdjZoB03oA2gIR0Bu+DELpiZwdX2UKGgGR0BU8GluWKMvaAdLy2gIR0BvB67TUiIMdX2UKGgGR0CB3fO7g88taAdN6ANoCEdAbzWYht+CsnV9lChoBkdATuFE3Kji42gHS5doCEdAb1ExnnMdLnV9lChoBkdAgmM1EmY0EWgHTegDaAhHQG9a6QFLWZt1fZQoaAZHQDaDSlWOp85oB0tFaAhHQG9nJa7mMfl1fZQoaAZHQICq96/qPfdoB03oA2gIR0BvruoBJZntdX2UKGgGR0CC4b9jPOY6aAdN6ANoCEdAb75geii7CnV9lChoBkdAfILH1e0G/2gHTSwDaAhHQG/nOM+/xlR1fZQoaAZHQIK/VnIyTINoB03oA2gIR0BwEWXrt3OfdX2UKGgGR0CBQtCkXUH6aAdNhgNoCEdAcDPYYixFAnV9lChoBkdAed3glWwNb2gHTbQCaAhHQHA0AHNX5nF1fZQoaAZHQILSYjY7JXBoB03oA2gIR0BwNSV5a/yodX2UKGgGR0BKxSa/h2nsaAdLX2gIR0BwPJMCcPOIdX2UKGgGR0B1YqrZJ04jaAdNSAJoCEdAcGxetSydF3V9lChoBkdAgmG/5k9U0mgHTegDaAhHQHBueDjBEa51fZQoaAZHQIMpAVfu1F9oB03oA2gIR0Bwkg0hvBJqdX2UKGgGR0CCFGElme18aAdN6ANoCEdAcJqPbfxc3XV9lChoBkdAgxyQ9zOopGgHTegDaAhHQHDLCfDk2gp1fZQoaAZHQIMxpb+tKZloB03oA2gIR0BwzVQMx46fdX2UKGgGR0CAFwK1G9YfaAdN6ANoCEdAcPE9eyAxz3V9lChoBkdAgLMFSS/0umgHTegDaAhHQHD6BI8QqZt1fZQoaAZHQILG2rbQC0ZoB03oA2gIR0BxKM1ivxH5dX2UKGgGR0CC02UfPompaAdN6ANoCEdAcSr3/xUedXV9lChoBkdAgp9mOU+s5mgHTegDaAhHQHFO79AHE/B1fZQoaAZHQII9/6j3225oB03oA2gIR0BxV8FTvRZ2dX2UKGgGR0CDOA7vG6wuaAdN6ANoCEdAcYjMvysjmnV9lChoBkdAgtUOzIFNcmgHTegDaAhHQHGLAZwXIlt1fZQoaAZHQIFPPOyE+PloB03oA2gIR0BxrpWNm16WdX2UKGgGR0CDGLZ2ZApsaAdN6ANoCEdAcbe51eSjg3V9lChoBkdAgwFqsMiKSGgHTegDaAhHQHHmEvoNd7h1fZQoaAZHQIJvq7oSteVoB03oA2gIR0Bx6Eq9XcQAdX2UKGgGR0CC80r6LwWnaAdN6ANoCEdAcgtpy6tknXV9lChoBkdAguM0ONHYpWgHTegDaAhHQHIT+2iL2pR1fZQoaAZHQGTWKvNeMQ5oB0v2aAhHQHIqSm65Gz91fZQoaAZHQH/Eb/bTMJRoB00xA2gIR0ByMxjvuw5edX2UKGgGR0CCTvYNAkcCaAdN6ANoCEdAckMbs4T9KnV9lChoBkdAgzZlRP420mgHTegDaAhHQHJqSYkVvdd1ZS4="
91
+ },
92
+ "ep_success_buffer": {
93
+ ":type:": "<class 'collections.deque'>",
94
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
+ },
96
+ "_n_updates": 7750,
97
+ "n_steps": 5,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 1.0,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.5,
102
+ "max_grad_norm": 0.5,
103
+ "normalize_advantage": false
104
+ }
a2c-Walker2DBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23887a9ef47c6f1d9af50a10695e590896bec3dd6a8d7550c71c5ac1220be116
3
+ size 50622
a2c-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e4a6ebd1df75fce749a08eaed2e8e0ca994609b4b1adedf1a7f2fd577727928
3
+ size 51390
a2c-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6db1e44c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6db1e44ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6db1e44d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6db1e44dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f6db1e44e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f6db1e44ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6db1e44f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6db1e47040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6db1e470d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6db1e47160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6db1e471f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6db1e47280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6db1e463c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 155000, "_total_timesteps": 155000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679527196790909877, "learning_rate": 0.001, "tensorboard_log": "value_loss", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAM45CT0AAAAA7rrLNg7QE74AAAAAsgwxPgAAAIDZ/M8+1DgxvytP8T2TOhe+OMWkPeGN7Dw9k7S9z38CPu9U4j0tEJG+mKKuPZOYBb4RmbW9Mz5IPnsATT7S5VC/AAAAAO66yzZ61Nu9AAAAAPtTKD4AAACAWx1iP9Y/B7+KmtM9vk8Xvq6upj0PyA0/+U6evdpKAT6V7OQ9ssErQOvDez3OEDG/yiRNvjM+SD57AE0+6A62PQAAAADuuss2u9e+vQAAAADnJSo+AAAAgJyrpD6pcJu+mbjDPF4yF75ru6I9NjlqPZw7lr0h0tU9+X8gvplRjr78EyA/xosvvm97c74zPkg+ewBNPjPf1D0AAAAA7rrLNgcKC74AAAAAffQvPgAAAIDhk5w+OIo5vlRQwD1WCRe+pfamPXcpOj1g67e9iKQBPn555j2/VJG+OR8OPISgOr6pTHC9Mz5IPnsATT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVdGIPwAAAACpDYg/AAAAAFRO1TwAAAAAitx+PwAAAAD824M/AAAAAKDwSr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGlvbj8AAAAABuiDPwAAAACe3pu9AAAAAAYWiD8AAAAARXR7PwAAAACcoHi9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICcf4c/AAAAAOaceT8AAAAAR1LFPQAAAAAVRIg/AAAAANAXhD8AAAAAMg9iOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaJR3PwAAAADKSG0/AAAAADvXxr0AAAAABJSFPwAAAAACI3g/AAAAACuct70AAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH/BNZNfw7WMAWyUTegDjAF0lEdAZkV4NZvDQHV9lChoBkdAf8dnrpqynmgHTegDaAhHQGZN052hZhd1fZQoaAZHQEQ8/k/8l5ZoB0tQaAhHQGZdcHGCI1t1fZQoaAZHQCsebTc6/7BoB0sUaAhHQGZhVdHDrJN1fZQoaAZHQCfoNwzch1VoB0sVaAhHQGZlVwHZ9NN1fZQoaAZHQFZknQ6ZH/doB0v+aAhHQGZ3d+ocaOx1fZQoaAZHQH+005uIhyNoB03oA2gIR0BmiLWK/EfldX2UKGgGR0B/3Sez2OABaAdN6ANoCEdAZq4fvF3pwHV9lChoBkdATMHgNwzch2gHS1poCEdAZsE4aP0ZnHV9lChoBkdAgAZCgK4QSWgHTegDaAhHQGcrMIVuaWp1fZQoaAZHQIAE3RsuWbBoB03oA2gIR0BnO+JWNm16dX2UKGgGR0B9sJGDtgKGaAdNpANoCEdAZz52+PBBRnV9lChoBkdAgADvvBrN4mgHTegDaAhHQGd/vw3HaOB1fZQoaAZHQIH48JfICEJoB03oA2gIR0Bn6jeXRgJDdX2UKGgGR0CAAcGO+7DmaAdN6ANoCEdAZ/sRZEDyOXV9lChoBkdAgAlMUh3aBmgHTegDaAhHQGf9lVktmL91fZQoaAZHQHwtLhNucc5oB00XA2gIR0BoGNu5z5oHdX2UKGgGR0BWGiuloDgZaAdL4mgIR0BoRlymygPFdX2UKGgGR0BU4JR8+iaiaAdLlmgIR0BoYy48U21ldX2UKGgGR0BFGryMDOkdaAdLO2gIR0Bobh+DvmYCdX2UKGgGR0BHmpWFN+LFaAdLVGgIR0Bofj5uZThpdX2UKGgGR0Azig3974SIaAdLOGgIR0BoiOaDwpfAdX2UKGgGR0B5REXbdrO8aAdN/wJoCEdAaJQtxuKoAHV9lChoBkdAgrE3BYV6/2gHTegDaAhHQGitfapPykN1fZQoaAZHQIKS2Myad+ZoB03oA2gIR0BovlTkyULVdX2UKGgGR0BQWCvTw2ETaAdLZWgIR0Bo0anWJ79idX2UKGgGR0BPCnxz7uUmaAdLamgIR0Bo5aaLGaQWdX2UKGgGR0CBNVWkrPMTaAdN6ANoCEdAaUew0waisXV9lChoBkdAgYnpI1+AmWgHTegDaAhHQGlS+WOZLIx1fZQoaAZHQIG83fGdZq5oB03oA2gIR0Bpa+QIUrTZdX2UKGgGR0CCc9rX18LKaAdN6ANoCEdAaaV0aIeo1nV9lChoBkdAgWwHjABT42gHTegDaAhHQGoKeS8rZrZ1fZQoaAZHQILKRUYKpkxoB03oA2gIR0BqFa4z7/GVdX2UKGgGR0CCm0VbA1vVaAdN6ANoCEdAai43zcynDXV9lChoBkdAgiKETYdyUGgHTegDaAhHQGplyP2f0291fZQoaAZHQIKJmnwXqJNoB03oA2gIR0Bqxbn3cpLFdX2UKGgGR0CCuqZP2wmmaAdN6ANoCEdAatEL9/BnBnV9lChoBkdAgsqHdfsu4GgHTegDaAhHQGrpaiblRxd1fZQoaAZHQIMAeNxVAA1oB03oA2gIR0BrIP9itq59dX2UKGgGR0BGhU1IiC8OaAdLPWgIR0BrLYYixFAndX2UKGgGR0CCv0fBeokzaAdN6ANoCEdAa4T0nw5NoXV9lChoBkdAgp0v5xiobWgHTegDaAhHQGuQnmig00p1fZQoaAZHQIJ9QazeGfxoB03oA2gIR0BrqSPyTY/WdX2UKGgGR0CCVoebutwKaAdN6ANoCEdAa+wX1J17pnV9lChoBkdAgeMvVd5Y5mgHTegDaAhHQGxCQXyiEg51fZQoaAZHQILgWWIGhVVoB03oA2gIR0BsTUdeY2KmdX2UKGgGR0CDCBNEgGKRaAdN6ANoCEdAbGVvkzXSSnV9lChoBkdAgp2Ma86FNGgHTegDaAhHQGynJv5xiod1fZQoaAZHQII22LBKtgdoB03oA2gIR0BtAKqyWzF/dX2UKGgGR0CCssEbo8p1aAdN6ANoCEdAbQuhbGFSKnV9lChoBkdAgrWFB6a9b2gHTegDaAhHQG0kLjo6jnF1fZQoaAZHQGo8nlwLmZFoB01LAWgIR0BtYrTUiILxdX2UKGgGR0CC/SZx7zClaAdN6ANoCEdAbWedfb9IgHV9lChoBkdASATdJrcj7mgHS5FoCEdAbX3oBaLXMHV9lChoBkdAgt7Ne+mFamgHTegDaAhHQG28MFdLQHB1fZQoaAZHQILg3k7wKBxoB03oA2gIR0Btx21v2oNvdX2UKGgGR0CC3Y0Nz8xcaAdN6ANoCEdAbiKKsuFpPHV9lChoBkdAgj0yyUs4DWgHTegDaAhHQG45xt52Qnx1fZQoaAZHQIKOgBkqc3FoB03oA2gIR0Bue4LgGbCrdX2UKGgGR0CC5mll9SdfaAdN6ANoCEdAboculoDgZXV9lChoBkdAV//4Hoouw2gHS5FoCEdAbqKSDh99dHV9lChoBkdAgMvIHC4z8GgHTegDaAhHQG7iCyprDZV1fZQoaAZHQIHaLeqJdjZoB03oA2gIR0Bu+DELpiZwdX2UKGgGR0BU8GluWKMvaAdLy2gIR0BvB67TUiIMdX2UKGgGR0CB3fO7g88taAdN6ANoCEdAbzWYht+CsnV9lChoBkdATuFE3Kji42gHS5doCEdAb1ExnnMdLnV9lChoBkdAgmM1EmY0EWgHTegDaAhHQG9a6QFLWZt1fZQoaAZHQDaDSlWOp85oB0tFaAhHQG9nJa7mMfl1fZQoaAZHQICq96/qPfdoB03oA2gIR0BvruoBJZntdX2UKGgGR0CC4b9jPOY6aAdN6ANoCEdAb75geii7CnV9lChoBkdAfILH1e0G/2gHTSwDaAhHQG/nOM+/xlR1fZQoaAZHQIK/VnIyTINoB03oA2gIR0BwEWXrt3OfdX2UKGgGR0CBQtCkXUH6aAdNhgNoCEdAcDPYYixFAnV9lChoBkdAed3glWwNb2gHTbQCaAhHQHA0AHNX5nF1fZQoaAZHQILSYjY7JXBoB03oA2gIR0BwNSV5a/yodX2UKGgGR0BKxSa/h2nsaAdLX2gIR0BwPJMCcPOIdX2UKGgGR0B1YqrZJ04jaAdNSAJoCEdAcGxetSydF3V9lChoBkdAgmG/5k9U0mgHTegDaAhHQHBueDjBEa51fZQoaAZHQIMpAVfu1F9oB03oA2gIR0Bwkg0hvBJqdX2UKGgGR0CCFGElme18aAdN6ANoCEdAcJqPbfxc3XV9lChoBkdAgxyQ9zOopGgHTegDaAhHQHDLCfDk2gp1fZQoaAZHQIMxpb+tKZloB03oA2gIR0BwzVQMx46fdX2UKGgGR0CAFwK1G9YfaAdN6ANoCEdAcPE9eyAxz3V9lChoBkdAgLMFSS/0umgHTegDaAhHQHD6BI8QqZt1fZQoaAZHQILG2rbQC0ZoB03oA2gIR0BxKM1ivxH5dX2UKGgGR0CC02UfPompaAdN6ANoCEdAcSr3/xUedXV9lChoBkdAgp9mOU+s5mgHTegDaAhHQHFO79AHE/B1fZQoaAZHQII9/6j3225oB03oA2gIR0BxV8FTvRZ2dX2UKGgGR0CDOA7vG6wuaAdN6ANoCEdAcYjMvysjmnV9lChoBkdAgtUOzIFNcmgHTegDaAhHQHGLAZwXIlt1fZQoaAZHQIFPPOyE+PloB03oA2gIR0BxrpWNm16WdX2UKGgGR0CDGLZ2ZApsaAdN6ANoCEdAcbe51eSjg3V9lChoBkdAgwFqsMiKSGgHTegDaAhHQHHmEvoNd7h1fZQoaAZHQIJvq7oSteVoB03oA2gIR0Bx6Eq9XcQAdX2UKGgGR0CC80r6LwWnaAdN6ANoCEdAcgtpy6tknXV9lChoBkdAguM0ONHYpWgHTegDaAhHQHIT+2iL2pR1fZQoaAZHQGTWKvNeMQ5oB0v2aAhHQHIqSm65Gz91fZQoaAZHQH/Eb/bTMJRoB00xA2gIR0ByMxjvuw5edX2UKGgGR0CCTvYNAkcCaAdN6ANoCEdAckMbs4T9KnV9lChoBkdAgzZlRP420mgHTegDaAhHQHJqSYkVvdd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7750, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (439 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 618.6319440646563, "std_reward": 6.307682368417105, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-22T23:24:53.985406"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f01613820427f8bfdc505e952c5719bb1891f9d9cc89c983af6d3f18b5aac907
3
+ size 1936