Shreyask09 commited on
Commit
c21b553
·
verified ·
1 Parent(s): 6ca606d

End of training

Browse files
README.md CHANGED
@@ -22,12 +22,12 @@ should probably proofread and complete it, then remove this comment. -->
22
 
23
  This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the Samyak29/synthetic-speaker-diarization-dataset-hindi-large dataset.
24
  It achieves the following results on the evaluation set:
25
- - Loss: 0.4284
26
- - Model Preparation Time: 0.0095
27
- - Der: 0.1417
28
- - False Alarm: 0.0235
29
- - Missed Detection: 0.0281
30
- - Confusion: 0.0901
31
 
32
  ## Model description
33
 
@@ -50,7 +50,7 @@ The following hyperparameters were used during training:
50
  - train_batch_size: 32
51
  - eval_batch_size: 32
52
  - seed: 42
53
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: cosine
55
  - num_epochs: 5
56
 
@@ -58,16 +58,16 @@ The following hyperparameters were used during training:
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
60
  |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:|
61
- | 0.4708 | 1.0 | 194 | 0.4808 | 0.0095 | 0.1613 | 0.0255 | 0.0323 | 0.1035 |
62
- | 0.388 | 2.0 | 388 | 0.4553 | 0.0095 | 0.1499 | 0.0225 | 0.0314 | 0.0960 |
63
- | 0.3654 | 3.0 | 582 | 0.4368 | 0.0095 | 0.1433 | 0.0242 | 0.0278 | 0.0913 |
64
- | 0.363 | 4.0 | 776 | 0.4296 | 0.0095 | 0.1410 | 0.0239 | 0.0279 | 0.0893 |
65
- | 0.3388 | 5.0 | 970 | 0.4284 | 0.0095 | 0.1417 | 0.0235 | 0.0281 | 0.0901 |
66
 
67
 
68
  ### Framework versions
69
 
70
- - Transformers 4.44.2
71
- - Pytorch 2.5.0+cu121
72
- - Datasets 3.1.0
73
- - Tokenizers 0.19.1
 
22
 
23
  This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the Samyak29/synthetic-speaker-diarization-dataset-hindi-large dataset.
24
  It achieves the following results on the evaluation set:
25
+ - Loss: 0.4367
26
+ - Model Preparation Time: 0.0045
27
+ - Der: 0.1440
28
+ - False Alarm: 0.0230
29
+ - Missed Detection: 0.0280
30
+ - Confusion: 0.0930
31
 
32
  ## Model description
33
 
 
50
  - train_batch_size: 32
51
  - eval_batch_size: 32
52
  - seed: 42
53
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
  - lr_scheduler_type: cosine
55
  - num_epochs: 5
56
 
 
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
60
  |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:|
61
+ | 0.4598 | 1.0 | 194 | 0.4815 | 0.0045 | 0.1608 | 0.0231 | 0.0340 | 0.1036 |
62
+ | 0.3926 | 2.0 | 388 | 0.4519 | 0.0045 | 0.1545 | 0.0225 | 0.0312 | 0.1008 |
63
+ | 0.3602 | 3.0 | 582 | 0.4442 | 0.0045 | 0.1476 | 0.0232 | 0.0288 | 0.0956 |
64
+ | 0.3611 | 4.0 | 776 | 0.4388 | 0.0045 | 0.1443 | 0.0228 | 0.0281 | 0.0934 |
65
+ | 0.3399 | 5.0 | 970 | 0.4367 | 0.0045 | 0.1440 | 0.0230 | 0.0280 | 0.0930 |
66
 
67
 
68
  ### Framework versions
69
 
70
+ - Transformers 4.47.1
71
+ - Pytorch 2.5.1+cu121
72
+ - Datasets 3.2.0
73
+ - Tokenizers 0.21.0
runs/Jan03_10-57-52_52d3b1bf08f6/events.out.tfevents.1735901884.52d3b1bf08f6.308.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60d65d5ce16b05fab28afc4be5d5f96a0f758bdc1c36f16a85f73f651a5451bc
3
- size 15456
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d4f1f5be27cc41f0a88eddde9c0d7b7ae7c42df7547fdd7f1011e994b33ed46
3
+ size 16362