--- library_name: transformers language: - jpn license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.4370 - Model Preparation Time: 0.0038 - Der: 0.1404 - False Alarm: 0.0234 - Missed Detection: 0.0272 - Confusion: 0.0898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4567 | 1.0 | 194 | 0.4782 | 0.0038 | 0.1572 | 0.0219 | 0.0351 | 0.1003 | | 0.384 | 2.0 | 388 | 0.4576 | 0.0038 | 0.1483 | 0.0221 | 0.0295 | 0.0968 | | 0.3582 | 3.0 | 582 | 0.4375 | 0.0038 | 0.1402 | 0.0230 | 0.0284 | 0.0888 | | 0.357 | 4.0 | 776 | 0.4406 | 0.0038 | 0.1413 | 0.0229 | 0.0277 | 0.0907 | | 0.3406 | 5.0 | 970 | 0.4370 | 0.0038 | 0.1404 | 0.0234 | 0.0272 | 0.0898 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1