--- library_name: transformers language: - hi license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - Samyak29/synthetic-speaker-diarization-dataset-hindi-large model-index: - name: speaker-segmentation-fine-tuned-hindi results: [] --- # speaker-segmentation-fine-tuned-hindi This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the Samyak29/synthetic-speaker-diarization-dataset-hindi-large dataset. It achieves the following results on the evaluation set: - Loss: 0.4367 - Model Preparation Time: 0.0045 - Der: 0.1440 - False Alarm: 0.0230 - Missed Detection: 0.0280 - Confusion: 0.0930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4598 | 1.0 | 194 | 0.4815 | 0.0045 | 0.1608 | 0.0231 | 0.0340 | 0.1036 | | 0.3926 | 2.0 | 388 | 0.4519 | 0.0045 | 0.1545 | 0.0225 | 0.0312 | 0.1008 | | 0.3602 | 3.0 | 582 | 0.4442 | 0.0045 | 0.1476 | 0.0232 | 0.0288 | 0.0956 | | 0.3611 | 4.0 | 776 | 0.4388 | 0.0045 | 0.1443 | 0.0228 | 0.0281 | 0.0934 | | 0.3399 | 5.0 | 970 | 0.4367 | 0.0045 | 0.1440 | 0.0230 | 0.0280 | 0.0930 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0