a2c-AntBulletEnv-v0 / config.json
Shridipta-06's picture
Initial commit
b29fd47
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f102b5ffe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f102b5ffeb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f102b5fff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f102b604040>", "_build": "<function ActorCriticPolicy._build at 0x7f102b6040d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f102b604160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f102b6041f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f102b604280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f102b604310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f102b6043a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f102b604430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f102b6044c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f102b608240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688719517240081754, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI9Enb+ueOk+sSX9PpPqTT/nTLg+f4YcP1I0Nb4NO2W9ONRsP7h73r1o6r++bRoYPxtIojyCK7W/CQxSPw6XCr9alCw/hChfv6Sw+j7TMVI/qSKHv1bnBz6wiLC+2alLvwJBcD9nj/Y+nvrKPtGwUj8ntADA8a0SvztJAj9mpLC/SYyqvBnVD75+bm6+TT7SP9GIaj9X+PW8mzCKv0YzRjxqHmW/KxLOvze4Yj/d4e29h/++PzJ4+j4pqYg+Xw6vvzzlhb/zhpU8mRl1v0Bqx7wCQXA/j+YEwHhvIcDRsFI/xaBQv8zOP78319M+pyUAQMzZK798mg2/+fmAPfUR4D3E+mY/XtEYQJhV9L3Ur4c/00a+v76+sT0k6zQ/RCT4v1yqPL9N1FO+VFf/PqYcFEBJCXm/tZW2P4WxGL8x3Si/AkFwP4/mBMCe+so+zYabv8b3CcBBRxe/kSkAP06SEj7liC8+9QGovj3NPr4EK5A+x7BmP27DL73dImG/qujTP1uiE7+l87s+geliP+Mo/b33xL4/8w+7vSDPKz+a9Qw/k5h8v6Ef6D7vwkO/SRgOv5djiL9nj/Y+nvrKPtGwUj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC7mFY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARkiyPQAAAADgavG/AAAAAHXhRz0AAAAAW+7yPwAAAADLKbg9AAAAAACp9z8AAAAAnFe1vQAAAAD3R+W/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FRkNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPfnEb0AAAAAniP3vwAAAABDXgC9AAAAABYv9T8AAAAAr4vzPQAAAABpAvk/AAAAABxK7LwAAAAA6EHdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCowjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBnHwa+AAAAAH69478AAAAA3BzZPQAAAAB3meM/AAAAANyjCD0AAAAACUzdPwAAAAD9Feg8AAAAAANZ/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5nte1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKd4LvgAAAADQrva/AAAAAMK5I70AAAAAxQHcPwAAAAAFe6G9AAAAALMXAEAAAAAAIi22PQAAAAAGoea/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5IXbg0j1SMAWyUTegDjAF0lEdAq1Uyn3ta6nV9lChoBkdAmPc5V4oqkWgHTegDaAhHQKtfgwwj+rF1fZQoaAZHQJ3M5/8VHnVoB03oA2gIR0CrX/NoakyldX2UKGgGR0CcltR5C4SZaAdN6ANoCEdAq2EqRU3n6nV9lChoBkdAn+vkEC/47GgHTegDaAhHQKtlhA5aNdZ1fZQoaAZHQJtO0QDmr81oB03oA2gIR0CrbfHQID5kdX2UKGgGR0Ce+5XuE25yaAdN6ANoCEdAq2451cMVlHV9lChoBkdAnheA3o9s8GgHTegDaAhHQKtvAJIDoyN1fZQoaAZHQJxWwGcFyJdoB03oA2gIR0Crcf0IC2c8dX2UKGgGR0CeTpFNtZV5aAdN6ANoCEdAq3sZf0Eov3V9lChoBkdAmYILRrrPdGgHTegDaAhHQKt7gZuQ6p51fZQoaAZHQJraCLUCq6xoB03oA2gIR0CrfJVrAP/adX2UKGgGR0CW0u6nivPkaAdN6ANoCEdAq4EmtlqagHV9lChoBkdAnVdoaHbh32gHTegDaAhHQKuKi/UvwmV1fZQoaAZHQJ2OtaePJaJoB03oA2gIR0Cris+18b71dX2UKGgGR0Cf+3Fxn3+NaAdN6ANoCEdAq4uKCL/CInV9lChoBkdAn8y56Uqx1WgHTegDaAhHQKuOe0Z3s5Z1fZQoaAZHQKAUZMQEpy9oB03oA2gIR0CrluSRKYiQdX2UKGgGR0CdIoySmqHXaAdN6ANoCEdAq5cnpMYdhnV9lChoBkdAndLr1mJ3xGgHTegDaAhHQKuX47fYSQJ1fZQoaAZHQJ8nN5zHS4RoB03oA2gIR0CrnAkkKNQ1dX2UKGgGR0CYPUEYwZflaAdN6ANoCEdAq6dXitJWenV9lChoBkdAnmiM2FWXC2gHTegDaAhHQKunnH4oJAt1fZQoaAZHQJhFooiLVFxoB03oA2gIR0CrqFvJq7AddX2UKGgGR0CceRsHSncdaAdN6ANoCEdAq6tEHWz4UXV9lChoBkdAnhCrA1vVE2gHTegDaAhHQKuzvg2qDK51fZQoaAZHQJ6QPLNfPX1oB03oA2gIR0CrtALvCuU2dX2UKGgGR0CXV4ZdfLLZaAdN6ANoCEdAq7TElqrR0HV9lChoBkdAn49DP4VRDWgHTegDaAhHQKu34UliSaF1fZQoaAZHQJ3mAy1uzhRoB03oA2gIR0CrxEsS00FbdX2UKGgGR0CZ0DoFV1fWaAdN6ANoCEdAq8SOcawUxnV9lChoBkdAnAQgEdNnG2gHTegDaAhHQKvFTzcynDR1fZQoaAZHQJ5Z+UVzp5hoB03oA2gIR0CryD4ht+CsdX2UKGgGR0CgGNpwsGxEaAdN6ANoCEdAq9C0KXv6THV9lChoBkdAm2dPrOZ9eGgHTegDaAhHQKvQ/cE/0NB1fZQoaAZHQJ0wwv0yxiZoB03oA2gIR0Cr0b6NdZ7pdX2UKGgGR0Cet2le4TbnaAdN6ANoCEdAq9S3cQAdXHV9lChoBkdAm/fzCk43m2gHTegDaAhHQKvgO2R7qpt1fZQoaAZHQJw1Fv60pmVoB03oA2gIR0Cr4KczyjHodX2UKGgGR0CX87R77bcoaAdN6ANoCEdAq+HYRbr1NHV9lChoBkdAnDMW/Firk2gHTegDaAhHQKvk+wY+B6N1fZQoaAZHQJ4bIUzsQd1oB03oA2gIR0Cr7YGACnxbdX2UKGgGR0Cbu/Xk5p8GaAdN6ANoCEdAq+3JtYSxq3V9lChoBkdAm6cpEDyOJmgHTegDaAhHQKvuh4fwI+p1fZQoaAZHQJ2RAXIlt0poB03oA2gIR0Cr8Yhvze41dX2UKGgGR0CVhzaURnOCaAdN6ANoCEdAq/wNqk/KQ3V9lChoBkdAg1uBdD6WPmgHTegDaAhHQKv8fPGACnx1fZQoaAZHQIa2hqubI91oB03oA2gIR0Cr/ax28qWkdX2UKGgGR0CXgPYsd1dPaAdN6ANoCEdArAIlNFjNIXV9lChoBkdAmsMb0e2d/mgHTegDaAhHQKwKvzMA3kx1fZQoaAZHQJTfQB/7SApoB03oA2gIR0CsCwhCdBjXdX2UKGgGR0CPYCa/ATIvaAdN6ANoCEdArAvIbZOBUnV9lChoBkdAkqxl1Oj7AWgHTegDaAhHQKwO1RPXTVl1fZQoaAZHQJevVxOtW+5oB03oA2gIR0CsGBTch1TzdX2UKGgGR0CV/9HVPN3XaAdN6ANoCEdArBh7dSEUTXV9lChoBkdAleAl1SwW32gHTegDaAhHQKwZjqUu+RJ1fZQoaAZHQJeG3aakRBhoB03oA2gIR0CsHjtcfNiZdX2UKGgGR0CS9JIBzV+aaAdN6ANoCEdArCgQ8B+4LHV9lChoBkdAlIbZxrBTGmgHTegDaAhHQKwoWN83Mpx1fZQoaAZHQJVtoQWepXJoB03oA2gIR0CsKSI1DSgHdX2UKGgGR0CVFecqe9SNaAdN6ANoCEdArCwg8p1A7nV9lChoBkdAksy5Rjz7M2gHTegDaAhHQKw0qophF3J1fZQoaAZHQJt+YT101ZVoB03oA2gIR0CsNPDzqbBodX2UKGgGR0CYX0PC2tuDaAdN6ANoCEdArDX3kmx+rnV9lChoBkdAmWrjUd7v5WgHTegDaAhHQKw6fuBMBZJ1fZQoaAZHQJmtbgWJrL1oB03oA2gIR0CsRV6CtihGdX2UKGgGR0CVg5DTz/ZNaAdN6ANoCEdArEWojnmq53V9lChoBkdAmRlq2SdOI2gHTegDaAhHQKxGbHhjvux1fZQoaAZHQJmUdT5wfhdoB03oA2gIR0CsSWUe2d/bdX2UKGgGR0CZ5B0f5k9VaAdN6ANoCEdArFIO0zCUHXV9lChoBkdAmNN57XxvvWgHTegDaAhHQKxSVyimEXd1fZQoaAZHQJmwi4/eLvVoB03oA2gIR0CsUxf82rGSdX2UKGgGR0CaufYMfA9FaAdN6ANoCEdArFayoMrmQ3V9lChoBkdAnGTd1QqI8GgHTegDaAhHQKxi3RTjvNN1fZQoaAZHQJ43E1UEPlNoB03oA2gIR0CsYynUc4o7dX2UKGgGR0CanfzSCvovaAdN6ANoCEdArGPuv+wTunV9lChoBkdAnMxXzcynDWgHTegDaAhHQKxnK1JDmbN1fZQoaAZHQJ1KjNKRMexoB03oA2gIR0CscDqJl8PXdX2UKGgGR0CdX9lI3BHkaAdN6ANoCEdArHB+PNmlInV9lChoBkdAnzkRBVuJlGgHTegDaAhHQKxxUcT8HfN1fZQoaAZHQJ9Hi0OVgQZoB03oA2gIR0CsdIgssg+ydX2UKGgGR0CegCY6GQCCaAdN6ANoCEdArIG9G0/nn3V9lChoBkdAoBdVAC4jKWgHTegDaAhHQKyCDUx20Rh1fZQoaAZHQJo2Ok9ECvJoB03oA2gIR0CsgtBsQ/X5dX2UKGgGR0CdbWpnpSrHaAdN6ANoCEdArIX5LuhK2HV9lChoBkdAm6bz/uLJjmgHTegDaAhHQKyOutHQQcx1fZQoaAZHQJcZTgIhQnBoB03oA2gIR0CsjwG+K0ladX2UKGgGR0CXBzgsbvPUaAdN6ANoCEdArI++bVjI73V9lChoBkdAnd5jasZHeGgHTegDaAhHQKyStsHB1tB1fZQoaAZHQJ4o+jesPrhoB03oA2gIR0Csnkm/nGKidX2UKGgGR0CeiHc7yQPqaAdN6ANoCEdArJ635tWMj3V9lChoBkdAnHzwGB4D92gHTegDaAhHQKyf3mbLEDR1fZQoaAZHQJ9ejAfuCwtoB03oA2gIR0Csou1ymygPdX2UKGgGR0CfTfbXpW3jaAdN6ANoCEdArKtjbxmTT3V9lChoBkdAn/5B/NJOFmgHTegDaAhHQKyrrt1IRRN1fZQoaAZHQKBG2QyRB/toB03oA2gIR0CsrHSmhufmdX2UKGgGR0CgR4ed9UjtaAdN6ANoCEdArK9r4+KTCHV9lChoBkdAnmKSbUgB92gHTegDaAhHQKy50PRzBAR1fZQoaAZHQJt/cwTM7ltoB03oA2gIR0CsukJWV/tqdX2UKGgGR0CYGWw3o9s8aAdN6ANoCEdArLts0SAYpHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}