Sidharthan commited on
Commit
57c5b11
·
verified ·
1 Parent(s): 88e79d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -33
README.md CHANGED
@@ -1,21 +1,9 @@
1
- ---
2
- language: en
3
- tags:
4
- - text-generation
5
- - YouTube-scripts
6
- - fine-tuned
7
- - causal-lm
8
- datasets:
9
- - custom
10
- license: mit
11
- model_name: Gemma 2 Scripter
12
- ---
13
-
14
  # Gemma 2 Scripter
15
 
16
  **Gemma 2 Scripter** is a fine-tuned version of the Gemma 2 2B instruct model designed for generating high-quality YouTube scripts based on provided keywords. It is optimized for text generation tasks, delivering coherent and contextually relevant outputs.
17
 
18
  ## Model Details
 
19
  - **Model Name**: `Sidharthan/gemma2_scripter`
20
  - **Architecture**: Causal Language Model
21
  - **Base Model**: Gemma 2 2B
@@ -24,15 +12,16 @@ model_name: Gemma 2 Scripter
24
  ## How to Use
25
 
26
  ### Installation
 
27
  Ensure you have the following dependencies installed:
 
28
  ```bash
29
  pip install torch transformers peft
30
  ```
31
 
32
  ### Code Sample
33
 
34
- python```
35
-
36
  from transformers import AutoTokenizer
37
  from peft import AutoPeftModelForCausalLM
38
  import torch
@@ -41,6 +30,7 @@ import torch
41
  model_name = "Sidharthan/gemma2_scripter"
42
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
43
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
44
  model = AutoPeftModelForCausalLM.from_pretrained(
45
  model_name,
46
  device_map=None,
@@ -51,9 +41,10 @@ model = AutoPeftModelForCausalLM.from_pretrained(
51
 
52
  # Generate a script
53
  def generate_script(prompt):
54
- formatted_prompt = f"<bos><start_of_turn>keywords\n{prompt}<end_of_turn>\n<start_of_turn>script\n"
55
  inputs = tokenizer(formatted_prompt, return_tensors="pt")
56
  inputs = {key: value.to(device) for key, value in inputs.items()}
 
57
  outputs = model.generate(
58
  **inputs,
59
  max_length=1024,
@@ -65,6 +56,7 @@ def generate_script(prompt):
65
  pad_token_id=tokenizer.pad_token_id,
66
  eos_token_id=tokenizer.eos_token_id
67
  )
 
68
  return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
69
 
70
  # Example usage
@@ -77,23 +69,17 @@ print(f"Generated Script:\n{response}")
77
 
78
  The model expects prompts in the following format:
79
 
80
- bash```
81
-
82
- <bos><start_of_turn>keywords
83
- <your_keywords_here><end_of_turn>
84
- <start_of_turn>script
85
-
86
  ```
87
 
88
  Example:
89
-
90
- bash```
91
-
92
- <bos><start_of_turn>keywords
93
- crosshatch waffle texture, dark chocolate, four bar crispy wafers, kat, milk chocolate<end_of_turn>
94
- <start_of_turn>script
95
-
96
-
97
  ```
98
 
99
  ### Output
@@ -105,11 +91,10 @@ The output is a YouTube script generated based on the keywords provided.
105
  - CPU: Slower inference due to computational constraints.
106
  - GPU: Optimized for faster inference with FP16 support.
107
 
108
-
109
  ### Applications
110
 
111
- - Generating structured scripts for video content.
112
- - Keyword-based text generation for creative tasks.
113
 
114
  ### License
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Gemma 2 Scripter
2
 
3
  **Gemma 2 Scripter** is a fine-tuned version of the Gemma 2 2B instruct model designed for generating high-quality YouTube scripts based on provided keywords. It is optimized for text generation tasks, delivering coherent and contextually relevant outputs.
4
 
5
  ## Model Details
6
+
7
  - **Model Name**: `Sidharthan/gemma2_scripter`
8
  - **Architecture**: Causal Language Model
9
  - **Base Model**: Gemma 2 2B
 
12
  ## How to Use
13
 
14
  ### Installation
15
+
16
  Ensure you have the following dependencies installed:
17
+
18
  ```bash
19
  pip install torch transformers peft
20
  ```
21
 
22
  ### Code Sample
23
 
24
+ ```python
 
25
  from transformers import AutoTokenizer
26
  from peft import AutoPeftModelForCausalLM
27
  import torch
 
30
  model_name = "Sidharthan/gemma2_scripter"
31
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
32
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
33
+
34
  model = AutoPeftModelForCausalLM.from_pretrained(
35
  model_name,
36
  device_map=None,
 
41
 
42
  # Generate a script
43
  def generate_script(prompt):
44
+ formatted_prompt = f"keywords\n{prompt}\nscript\n"
45
  inputs = tokenizer(formatted_prompt, return_tensors="pt")
46
  inputs = {key: value.to(device) for key, value in inputs.items()}
47
+
48
  outputs = model.generate(
49
  **inputs,
50
  max_length=1024,
 
56
  pad_token_id=tokenizer.pad_token_id,
57
  eos_token_id=tokenizer.eos_token_id
58
  )
59
+
60
  return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
61
 
62
  # Example usage
 
69
 
70
  The model expects prompts in the following format:
71
 
72
+ ```
73
+ keywords
74
+ <your keywords here>
75
+ script
 
 
76
  ```
77
 
78
  Example:
79
+ ```
80
+ keywords
81
+ crosshatch waffle texture, dark chocolate, four bar crispy wafers, kat, milk chocolate
82
+ script
 
 
 
 
83
  ```
84
 
85
  ### Output
 
91
  - CPU: Slower inference due to computational constraints.
92
  - GPU: Optimized for faster inference with FP16 support.
93
 
 
94
  ### Applications
95
 
96
+ - Generating structured scripts for video content
97
+ - Keyword-based text generation for creative tasks
98
 
99
  ### License
100