File size: 2,949 Bytes
3aef668 a58ba4e 15ad1dc a58ba4e 15ad1dc 32cb91a a712f19 aa29791 3aef668 770bbf5 a58ba4e 3aef668 ea1f15f 3aef668 de710f2 aa29791 3aef668 a58ba4e 3aef668 a58ba4e 3aef668 ea1f15f 3aef668 ea1f15f 3aef668 31d9805 3aef668 ea1f15f 3aef668 a58ba4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
base_model: microsoft/git-base
datasets:
- Sigurdur/isl-image-captioning
language:
- is
- en
license: mit
metrics:
- wer
pipeline_tag: image-to-text
tags:
- generated_from_trainer
model-index:
- name: isl-img2text
results: []
widget:
- src: examples-for-inference/a.jpg
- src: examples-for-inference/b.jpg
- src: examples-for-inference/c.jpg
library_name: transformers
---
# isl-img2text
Author: Sigurdur Haukur Birgisson
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on [Sigurdur/isl-image-captioning](https://huggingface.co/Sigurdur/isl-image-captioning).
It achieves the following results on the evaluation set:
- eval_loss: 0.0983
- eval_wer_score: 0.7295
- eval_runtime: 20.5346
- eval_samples_per_second: 7.792
- eval_steps_per_second: 0.974
- epoch: 15.0
- step: 150
It appears that the model heavilly overfitted to the dataset. Also, something I failed to consider was that the base model can't write any Icelandic characters and was thus not suited for this task. Future works might want to add the capability of writing Icelandic characters to the model.
repo: [https://github.com/sigurdurhaukur/isl-img-cap](https://github.com/sigurdurhaukur/isl-img-cap)
## Model description
More information needed
## Intended uses & limitations
Image captioning in Icelandic
## Training and evaluation data
Scraped images and their descriptions/captions from the Icelandic wikipedia.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
## Metrics
| Epoch | Training Loss | Validation Loss | Wer Score |
|-------|---------------|-----------------|-------------|
| 1 | 10.096300 | 8.690205 | 102.247536 |
| 2 | 8.268200 | 7.655295 | 97.659365 |
| 3 | 7.298000 | 6.679112 | 95.714129 |
| 4 | 6.319800 | 5.673368 | 2.136911 |
| 5 | 5.317500 | 4.656871 | 22.439211 |
| 6 | 4.315600 | 3.667494 | 1.001095 |
| 7 | 3.340000 | 2.722741 | 1.063527 |
| 8 | 2.417700 | 1.852253 | 0.944140 |
| 9 | 1.593900 | 1.136962 | 0.949617 |
| 10 | 0.944900 | 0.638581 | 0.933187 |
| 11 | 0.516200 | 0.355187 | 0.955093 |
| 12 | 0.281600 | 0.215951 | 0.822563 |
| 13 | 0.167500 | 0.148763 | 0.773275 |
| 14 | 0.111700 | 0.116783 | 0.792990 |
| 15 | 0.080800 | 0.098261 | 0.729463 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.0.1
- Datasets 2.20.0
- Tokenizers 0.19.1 |