import torch import torch.nn as nn class SimpleGPT(nn.Module): def __init__(self, vocab_size, block_size=8, n_embd=128, n_layer=4, n_head=4): super().__init__() self.token_emb = nn.Embedding(vocab_size, n_embd) self.pos_emb = nn.Embedding(block_size, n_embd) self.blocks = nn.ModuleList([ nn.TransformerEncoderLayer(d_model=n_embd, nhead=n_head, dropout=0.1) for _ in range(n_layer) ]) self.ln_f = nn.LayerNorm(n_embd) self.head = nn.Linear(n_embd, vocab_size) self.block_size = block_size def forward(self, idx): b, t = idx.size() assert t <= self.block_size, "Sequence too long" pos = torch.arange(0, t, dtype=torch.long, device=idx.device) tok_emb = self.token_emb(idx) pos_emb = self.pos_emb(pos)[None, :, :] x = tok_emb + pos_emb for block in self.blocks: x = block(x) x = self.ln_f(x) logits = self.head(x) return logits