---
license: mit
pipeline_tag: video-to-audio
---
# Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation
This repository contains the official model for **Hear-Your-Click**, an interactive framework designed for object-specific video-to-audio (V2A) generation. It enables users to generate sounds for specific objects within a video simply by clicking on the frame, addressing the limitations of global video information in complex scenes.
**[📚 Paper](https://huggingface.co/papers/2507.04959)** | **[💻 GitHub Repository](https://github.com/SynapGrid/Hear-Your-Click-2024)**
## About Hear-Your-Click
Hear-Your-Click introduces several key innovations to improve V2A generation:
- **Object-aware Contrastive Audio-Visual Fine-tuning (OCAV)** with a **Mask-guided Visual Encoder (MVE)** to obtain object-level visual features aligned with audio.
- Two tailored data augmentation strategies: **Random Video Stitching (RVS)** and **Mask-guided Loudness Modulation (MLM)**, which enhance the model's sensitivity to segmented objects.
- A new evaluation metric, the **CAV score**, designed to measure audio-visual correspondence more accurately.
This framework offers more precise control and significantly improves generation performance across various metrics.
## Installation
To set up the Hear-Your-Click environment, follow these steps:
1. **Clone the repository**:
```bash
git clone https://github.com/SynapGrid/Hear-Your-Click-2024.git
cd Hear-Your-Click-2024
```
2. **(Optional) Create a Conda environment**:
```bash
conda env create -n hyc python=3.9.11
conda activate hyc
```
3. **Install dependencies**:
```bash
pip install -r requirements.txt
```
## Model Checkpoints
1. **Download the model weights** and place them in `./hyc_inference/inference/ckpt/`:
* [epoch=000059.ckpt](https://drive.google.com/file/d/1QX24gEmN-cG03NlO0zT1geK1eUgOqDtk/view?usp=drive_link)
* [epoch_10.pt](https://drive.google.com/file/d/15tbqXR-99QNg-Il6wxPD66q4EM4UkVvJ/view?usp=drive_link)
* [eval_classifier.ckpt](https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/eval_classifier.ckpt)
* [double_guidance_classifier.ckpt](https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/double_guidance_classifier.ckpt)
You can use `gdown` and `wget` for convenient downloading:
```bash
pip install gdown
cd ./hyc_inference/inference/ckpt
gdown https://drive.google.com/uc?id=1QX24gEmN-cG03NlO0zT1geK1eUgOqDtk
gdown https://drive.google.com/uc?id=15tbqXR-99QNg-Il6wxPD66q4EM4UkVvJ
wget https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/eval_classifier.ckpt
wget https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/double_guidance_classifier.ckpt
```
2. **Download additional model weights** and place them in `./checkpoints`:
* [clap_clip.pt](https://github.com/MCR-PEFT/C-MCR/blob/main/checkpoints/clap_clip.pt)
* [laion_clap_fullset_fusion.pt](https://huggingface.co/lukewys/laion_clap/blob/main/630k-fusion-best.pt)
* [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)
## Inference Command
Launch the inference demo using the following command:
```bash
python app.py --device cuda:0,1 --sam_model_type vit_b
```
## Citation
If you find this work useful for your research or applications, please cite our paper:
```bibtex
@misc{liang2025hearyourclickinteractivevideotoaudiogeneration,
title={Hear-Your-Click: Interactive Video-to-Audio Generation via Object-aware Contrastive Audio-Visual Fine-tuning},
author={Yingshan Liang and Keyu Fan and Zhicheng Du and Yiran Wang and Qingyang Shi and Xinyu Zhang and Jiasheng Lu and Peiwu Qin},
year={2025},
eprint={2507.04959},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2507.04959},
}
```