--- license: mit pipeline_tag: video-to-audio --- # Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation This repository contains the official model for **Hear-Your-Click**, an interactive framework designed for object-specific video-to-audio (V2A) generation. It enables users to generate sounds for specific objects within a video simply by clicking on the frame, addressing the limitations of global video information in complex scenes. **[📚 Paper](https://huggingface.co/papers/2507.04959)** | **[💻 GitHub Repository](https://github.com/SynapGrid/Hear-Your-Click-2024)**

## About Hear-Your-Click Hear-Your-Click introduces several key innovations to improve V2A generation: - **Object-aware Contrastive Audio-Visual Fine-tuning (OCAV)** with a **Mask-guided Visual Encoder (MVE)** to obtain object-level visual features aligned with audio. - Two tailored data augmentation strategies: **Random Video Stitching (RVS)** and **Mask-guided Loudness Modulation (MLM)**, which enhance the model's sensitivity to segmented objects. - A new evaluation metric, the **CAV score**, designed to measure audio-visual correspondence more accurately. This framework offers more precise control and significantly improves generation performance across various metrics. ## Installation To set up the Hear-Your-Click environment, follow these steps: 1. **Clone the repository**: ```bash git clone https://github.com/SynapGrid/Hear-Your-Click-2024.git cd Hear-Your-Click-2024 ``` 2. **(Optional) Create a Conda environment**: ```bash conda env create -n hyc python=3.9.11 conda activate hyc ``` 3. **Install dependencies**: ```bash pip install -r requirements.txt ``` ## Model Checkpoints 1. **Download the model weights** and place them in `./hyc_inference/inference/ckpt/`: * [epoch=000059.ckpt](https://drive.google.com/file/d/1QX24gEmN-cG03NlO0zT1geK1eUgOqDtk/view?usp=drive_link) * [epoch_10.pt](https://drive.google.com/file/d/15tbqXR-99QNg-Il6wxPD66q4EM4UkVvJ/view?usp=drive_link) * [eval_classifier.ckpt](https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/eval_classifier.ckpt) * [double_guidance_classifier.ckpt](https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/double_guidance_classifier.ckpt) You can use `gdown` and `wget` for convenient downloading: ```bash pip install gdown cd ./hyc_inference/inference/ckpt gdown https://drive.google.com/uc?id=1QX24gEmN-cG03NlO0zT1geK1eUgOqDtk gdown https://drive.google.com/uc?id=15tbqXR-99QNg-Il6wxPD66q4EM4UkVvJ wget https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/eval_classifier.ckpt wget https://huggingface.co/SimianLuo/Diff-Foley/resolve/main/diff_foley_ckpt/double_guidance_classifier.ckpt ``` 2. **Download additional model weights** and place them in `./checkpoints`: * [clap_clip.pt](https://github.com/MCR-PEFT/C-MCR/blob/main/checkpoints/clap_clip.pt) * [laion_clap_fullset_fusion.pt](https://huggingface.co/lukewys/laion_clap/blob/main/630k-fusion-best.pt) * [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) ## Inference Command Launch the inference demo using the following command: ```bash python app.py --device cuda:0,1 --sam_model_type vit_b ``` ## Citation If you find this work useful for your research or applications, please cite our paper: ```bibtex @misc{liang2025hearyourclickinteractivevideotoaudiogeneration, title={Hear-Your-Click: Interactive Video-to-Audio Generation via Object-aware Contrastive Audio-Visual Fine-tuning}, author={Yingshan Liang and Keyu Fan and Zhicheng Du and Yiran Wang and Qingyang Shi and Xinyu Zhang and Jiasheng Lu and Peiwu Qin}, year={2025}, eprint={2507.04959}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2507.04959}, } ```