latent-consistency-models commited on
Commit
2db70b2
·
1 Parent(s): bbea94d

update inference

Browse files
Files changed (3) hide show
  1. inference.py +68 -0
  2. lcm_pipeline.py +273 -0
  3. lcm_scheduler.py +479 -0
inference.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lcm_pipeline import LatentConsistencyModelPipeline
2
+ from lcm_scheduler import LCMScheduler
3
+
4
+ from diffusers import AutoencoderKL, UNet2DConditionModel
5
+ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
6
+ from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor
7
+
8
+ import os
9
+ import torch
10
+ from tqdm import tqdm
11
+ from safetensors.torch import load_file
12
+
13
+ # Input Prompt:
14
+ prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair"
15
+
16
+ # Save Path:
17
+ save_path = "./lcm_images"
18
+ os.makedirs(save_path, exist_ok=True)
19
+
20
+
21
+ # Origin SD Model ID:
22
+ model_id = "digiplay/DreamShaper_7"
23
+
24
+
25
+ # Initalize Diffusers Model:
26
+ vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
27
+ text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
28
+ tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
29
+ unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", device_map=None, low_cpu_mem_usage=False, local_files_only=True)
30
+ safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker")
31
+ feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor")
32
+
33
+
34
+ # Initalize Scheduler:
35
+ scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon")
36
+
37
+
38
+ # Replace the unet with LCM:
39
+ lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors"
40
+ ckpt = load_file(lcm_unet_ckpt)
41
+ m, u = unet.load_state_dict(ckpt, strict=False)
42
+ if len(m) > 0:
43
+ print("missing keys:")
44
+ print(m)
45
+ if len(u) > 0:
46
+ print("unexpected keys:")
47
+ print(u)
48
+
49
+
50
+ # LCM Pipeline:
51
+ pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor)
52
+ pipe = pipe.to("cuda")
53
+
54
+
55
+ # Output Images:
56
+ images = pipe(prompt=prompt, num_images_per_prompt=4, num_inference_steps=4, guidance_scale=8.0, lcm_origin_steps=50).images
57
+
58
+ # Save Images:
59
+ for i in tqdm(range(len(images))):
60
+ output_path = os.path.join(save_path, "{}.png".format(i))
61
+ image = images[i]
62
+ image.save(output_path)
63
+
64
+
65
+
66
+
67
+
68
+
lcm_pipeline.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel
3
+ from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor
4
+ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
5
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
6
+ from diffusers.image_processor import VaeImageProcessor
7
+
8
+ from typing import List, Optional, Tuple, Union, Dict, Any
9
+
10
+ from diffusers import logging
11
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
12
+
13
+ class LatentConsistencyModelPipeline(DiffusionPipeline):
14
+ def __init__(
15
+ self,
16
+ vae: AutoencoderKL,
17
+ text_encoder: CLIPTextModel,
18
+ tokenizer: CLIPTokenizer,
19
+ unet: UNet2DConditionModel,
20
+ scheduler: None,
21
+ safety_checker: StableDiffusionSafetyChecker,
22
+ feature_extractor: CLIPImageProcessor,
23
+ requires_safety_checker: bool = True
24
+ ):
25
+ super().__init__()
26
+
27
+ self.register_modules(
28
+ vae=vae,
29
+ text_encoder=text_encoder,
30
+ tokenizer=tokenizer,
31
+ unet=unet,
32
+ scheduler=scheduler,
33
+ safety_checker=safety_checker,
34
+ feature_extractor=feature_extractor,
35
+ )
36
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
37
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
38
+
39
+
40
+ def _encode_prompt(
41
+ self,
42
+ prompt,
43
+ device,
44
+ num_images_per_prompt,
45
+ prompt_embeds: None,
46
+ ):
47
+ r"""
48
+ Encodes the prompt into text encoder hidden states.
49
+
50
+ Args:
51
+ prompt (`str` or `List[str]`, *optional*):
52
+ prompt to be encoded
53
+ device: (`torch.device`):
54
+ torch device
55
+ num_images_per_prompt (`int`):
56
+ number of images that should be generated per prompt
57
+ prompt_embeds (`torch.FloatTensor`, *optional*):
58
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
59
+ provided, text embeddings will be generated from `prompt` input argument.
60
+ """
61
+
62
+ if prompt is not None and isinstance(prompt, str):
63
+ batch_size = 1
64
+ elif prompt is not None and isinstance(prompt, list):
65
+ batch_size = len(prompt)
66
+ else:
67
+ batch_size = prompt_embeds.shape[0]
68
+
69
+ if prompt_embeds is None:
70
+
71
+ text_inputs = self.tokenizer(
72
+ prompt,
73
+ padding="max_length",
74
+ max_length=self.tokenizer.model_max_length,
75
+ truncation=True,
76
+ return_tensors="pt",
77
+ )
78
+ text_input_ids = text_inputs.input_ids
79
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
80
+
81
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
82
+ text_input_ids, untruncated_ids
83
+ ):
84
+ removed_text = self.tokenizer.batch_decode(
85
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
86
+ )
87
+ logger.warning(
88
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
89
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
90
+ )
91
+
92
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
93
+ attention_mask = text_inputs.attention_mask.to(device)
94
+ else:
95
+ attention_mask = None
96
+
97
+ prompt_embeds = self.text_encoder(
98
+ text_input_ids.to(device),
99
+ attention_mask=attention_mask,
100
+ )
101
+ prompt_embeds = prompt_embeds[0]
102
+
103
+ if self.text_encoder is not None:
104
+ prompt_embeds_dtype = self.text_encoder.dtype
105
+ elif self.unet is not None:
106
+ prompt_embeds_dtype = self.unet.dtype
107
+ else:
108
+ prompt_embeds_dtype = prompt_embeds.dtype
109
+
110
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
111
+
112
+ bs_embed, seq_len, _ = prompt_embeds.shape
113
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
114
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
115
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
116
+
117
+ # Don't need to get uncond prompt embedding because of LCM Guided Distillation
118
+ return prompt_embeds
119
+
120
+
121
+ def run_safety_checker(self, image, device, dtype):
122
+ if self.safety_checker is None:
123
+ has_nsfw_concept = None
124
+ else:
125
+ if torch.is_tensor(image):
126
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
127
+ else:
128
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
129
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
130
+ image, has_nsfw_concept = self.safety_checker(
131
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
132
+ )
133
+ return image, has_nsfw_concept
134
+
135
+
136
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents=None):
137
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
138
+ if latents is None:
139
+ latents = torch.randn(shape, dtype=dtype).to(device)
140
+ else:
141
+ latents = latents.to(device)
142
+ # scale the initial noise by the standard deviation required by the scheduler
143
+ latents = latents * self.scheduler.init_noise_sigma
144
+ return latents
145
+
146
+ def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
147
+ """
148
+ see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
149
+ Args:
150
+ timesteps: torch.Tensor: generate embedding vectors at these timesteps
151
+ embedding_dim: int: dimension of the embeddings to generate
152
+ dtype: data type of the generated embeddings
153
+
154
+ Returns:
155
+ embedding vectors with shape `(len(timesteps), embedding_dim)`
156
+ """
157
+ assert len(w.shape) == 1
158
+ w = w * 1000.
159
+
160
+ half_dim = embedding_dim // 2
161
+ emb = torch.log(torch.tensor(10000.)) / (half_dim - 1)
162
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
163
+ emb = w.to(dtype)[:, None] * emb[None, :]
164
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
165
+ if embedding_dim % 2 == 1: # zero pad
166
+ emb = torch.nn.functional.pad(emb, (0, 1))
167
+ assert emb.shape == (w.shape[0], embedding_dim)
168
+ return emb
169
+
170
+
171
+ @torch.no_grad()
172
+ def __call__(
173
+ self,
174
+ prompt: Union[str, List[str]] = None,
175
+ height: Optional[int] = 768,
176
+ width: Optional[int] = 768,
177
+ guidance_scale: float = 7.5,
178
+ num_images_per_prompt: Optional[int] = 1,
179
+ latents: Optional[torch.FloatTensor] = None,
180
+ num_inference_steps: int = 4,
181
+ lcm_origin_steps: int = 50,
182
+ prompt_embeds: Optional[torch.FloatTensor] = None,
183
+ output_type: Optional[str] = "pil",
184
+ return_dict: bool = True,
185
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
186
+ ):
187
+
188
+ # 0. Default height and width to unet
189
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
190
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
191
+
192
+ # 2. Define call parameters
193
+ if prompt is not None and isinstance(prompt, str):
194
+ batch_size = 1
195
+ elif prompt is not None and isinstance(prompt, list):
196
+ batch_size = len(prompt)
197
+ else:
198
+ batch_size = prompt_embeds.shape[0]
199
+
200
+ device = self._execution_device
201
+ # do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
202
+
203
+ # 3. Encode input prompt
204
+ prompt_embeds = self._encode_prompt(
205
+ prompt,
206
+ device,
207
+ num_images_per_prompt,
208
+ prompt_embeds=prompt_embeds,
209
+ )
210
+
211
+ # 4. Prepare timesteps
212
+ self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
213
+ timesteps = self.scheduler.timesteps
214
+
215
+ # 5. Prepare latent variable
216
+ num_channels_latents = self.unet.config.in_channels
217
+ latents = self.prepare_latents(
218
+ batch_size * num_images_per_prompt,
219
+ num_channels_latents,
220
+ height,
221
+ width,
222
+ prompt_embeds.dtype,
223
+ device,
224
+ latents,
225
+ )
226
+
227
+ bs = batch_size * num_images_per_prompt
228
+
229
+ # 6. Get Guidance Scale Embedding
230
+ w = torch.tensor(guidance_scale).repeat(bs)
231
+ w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device)
232
+
233
+ # 7. LCM MultiStep Sampling Loop:
234
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
235
+ for i, t in enumerate(timesteps):
236
+
237
+ ts = torch.full((bs,), t, device=device, dtype=torch.long)
238
+
239
+ # model prediction (v-prediction, eps, x)
240
+ model_pred = self.unet(
241
+ latents,
242
+ ts,
243
+ timestep_cond=w_embedding,
244
+ encoder_hidden_states=prompt_embeds,
245
+ cross_attention_kwargs=cross_attention_kwargs,
246
+ return_dict=False)[0]
247
+
248
+ # compute the previous noisy sample x_t -> x_t-1
249
+ latents, denoised = self.scheduler.step(model_pred, i, t, latents, return_dict=False)
250
+
251
+ # # call the callback, if provided
252
+ # if i == len(timesteps) - 1:
253
+ progress_bar.update()
254
+
255
+ if not output_type == "latent":
256
+ image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0]
257
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
258
+ else:
259
+ image = denoised
260
+ has_nsfw_concept = None
261
+
262
+ if has_nsfw_concept is None:
263
+ do_denormalize = [True] * image.shape[0]
264
+ else:
265
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
266
+
267
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
268
+
269
+
270
+ if not return_dict:
271
+ return (image, has_nsfw_concept)
272
+
273
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
lcm_scheduler.py ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
16
+ # and https://github.com/hojonathanho/diffusion
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+
25
+ from diffusers import ConfigMixin, SchedulerMixin
26
+ from diffusers.configuration_utils import register_to_config
27
+ from diffusers.utils import BaseOutput
28
+
29
+
30
+ @dataclass
31
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
32
+ class LCMSchedulerOutput(BaseOutput):
33
+ """
34
+ Output class for the scheduler's `step` function output.
35
+
36
+ Args:
37
+ prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
39
+ denoising loop.
40
+ pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
41
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
42
+ `pred_original_sample` can be used to preview progress or for guidance.
43
+ """
44
+
45
+ prev_sample: torch.FloatTensor
46
+ denoised: Optional[torch.FloatTensor] = None
47
+
48
+
49
+ # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
50
+ def betas_for_alpha_bar(
51
+ num_diffusion_timesteps,
52
+ max_beta=0.999,
53
+ alpha_transform_type="cosine",
54
+ ):
55
+ """
56
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
57
+ (1-beta) over time from t = [0,1].
58
+
59
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
60
+ to that part of the diffusion process.
61
+
62
+
63
+ Args:
64
+ num_diffusion_timesteps (`int`): the number of betas to produce.
65
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
66
+ prevent singularities.
67
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
68
+ Choose from `cosine` or `exp`
69
+
70
+ Returns:
71
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
72
+ """
73
+ if alpha_transform_type == "cosine":
74
+
75
+ def alpha_bar_fn(t):
76
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
77
+
78
+ elif alpha_transform_type == "exp":
79
+
80
+ def alpha_bar_fn(t):
81
+ return math.exp(t * -12.0)
82
+
83
+ else:
84
+ raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
85
+
86
+ betas = []
87
+ for i in range(num_diffusion_timesteps):
88
+ t1 = i / num_diffusion_timesteps
89
+ t2 = (i + 1) / num_diffusion_timesteps
90
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
91
+ return torch.tensor(betas, dtype=torch.float32)
92
+
93
+
94
+ def rescale_zero_terminal_snr(betas):
95
+ """
96
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
97
+
98
+
99
+ Args:
100
+ betas (`torch.FloatTensor`):
101
+ the betas that the scheduler is being initialized with.
102
+
103
+ Returns:
104
+ `torch.FloatTensor`: rescaled betas with zero terminal SNR
105
+ """
106
+ # Convert betas to alphas_bar_sqrt
107
+ alphas = 1.0 - betas
108
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
109
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
110
+
111
+ # Store old values.
112
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
113
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
114
+
115
+ # Shift so the last timestep is zero.
116
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
117
+
118
+ # Scale so the first timestep is back to the old value.
119
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
120
+
121
+ # Convert alphas_bar_sqrt to betas
122
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
123
+ alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
124
+ alphas = torch.cat([alphas_bar[0:1], alphas])
125
+ betas = 1 - alphas
126
+
127
+ return betas
128
+
129
+
130
+ class LCMScheduler(SchedulerMixin, ConfigMixin):
131
+ """
132
+ `LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
133
+ non-Markovian guidance.
134
+
135
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
136
+ methods the library implements for all schedulers such as loading and saving.
137
+
138
+ Args:
139
+ num_train_timesteps (`int`, defaults to 1000):
140
+ The number of diffusion steps to train the model.
141
+ beta_start (`float`, defaults to 0.0001):
142
+ The starting `beta` value of inference.
143
+ beta_end (`float`, defaults to 0.02):
144
+ The final `beta` value.
145
+ beta_schedule (`str`, defaults to `"linear"`):
146
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
147
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
148
+ trained_betas (`np.ndarray`, *optional*):
149
+ Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
150
+ clip_sample (`bool`, defaults to `True`):
151
+ Clip the predicted sample for numerical stability.
152
+ clip_sample_range (`float`, defaults to 1.0):
153
+ The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
154
+ set_alpha_to_one (`bool`, defaults to `True`):
155
+ Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
156
+ there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
157
+ otherwise it uses the alpha value at step 0.
158
+ steps_offset (`int`, defaults to 0):
159
+ An offset added to the inference steps. You can use a combination of `offset=1` and
160
+ `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
161
+ Diffusion.
162
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
163
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
164
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
165
+ Video](https://imagen.research.google/video/paper.pdf) paper).
166
+ thresholding (`bool`, defaults to `False`):
167
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
168
+ as Stable Diffusion.
169
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
170
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
171
+ sample_max_value (`float`, defaults to 1.0):
172
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
173
+ timestep_spacing (`str`, defaults to `"leading"`):
174
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
175
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
176
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
177
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
178
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
179
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
180
+ """
181
+
182
+ # _compatibles = [e.name for e in KarrasDiffusionSchedulers]
183
+ order = 1
184
+
185
+ @register_to_config
186
+ def __init__(
187
+ self,
188
+ num_train_timesteps: int = 1000,
189
+ beta_start: float = 0.0001,
190
+ beta_end: float = 0.02,
191
+ beta_schedule: str = "linear",
192
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
193
+ clip_sample: bool = True,
194
+ set_alpha_to_one: bool = True,
195
+ steps_offset: int = 0,
196
+ prediction_type: str = "epsilon",
197
+ thresholding: bool = False,
198
+ dynamic_thresholding_ratio: float = 0.995,
199
+ clip_sample_range: float = 1.0,
200
+ sample_max_value: float = 1.0,
201
+ timestep_spacing: str = "leading",
202
+ rescale_betas_zero_snr: bool = False,
203
+ ):
204
+ if trained_betas is not None:
205
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
206
+ elif beta_schedule == "linear":
207
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
208
+ elif beta_schedule == "scaled_linear":
209
+ # this schedule is very specific to the latent diffusion model.
210
+ self.betas = (
211
+ torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
212
+ )
213
+ elif beta_schedule == "squaredcos_cap_v2":
214
+ # Glide cosine schedule
215
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
216
+ else:
217
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
218
+
219
+ # Rescale for zero SNR
220
+ if rescale_betas_zero_snr:
221
+ self.betas = rescale_zero_terminal_snr(self.betas)
222
+
223
+ self.alphas = 1.0 - self.betas
224
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
225
+
226
+ # At every step in ddim, we are looking into the previous alphas_cumprod
227
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
228
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
229
+ # whether we use the final alpha of the "non-previous" one.
230
+ self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
231
+
232
+ # standard deviation of the initial noise distribution
233
+ self.init_noise_sigma = 1.0
234
+
235
+ # setable values
236
+ self.num_inference_steps = None
237
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
238
+
239
+ def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
240
+ """
241
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
242
+ current timestep.
243
+
244
+ Args:
245
+ sample (`torch.FloatTensor`):
246
+ The input sample.
247
+ timestep (`int`, *optional*):
248
+ The current timestep in the diffusion chain.
249
+
250
+ Returns:
251
+ `torch.FloatTensor`:
252
+ A scaled input sample.
253
+ """
254
+ return sample
255
+
256
+ def _get_variance(self, timestep, prev_timestep):
257
+ alpha_prod_t = self.alphas_cumprod[timestep]
258
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
259
+ beta_prod_t = 1 - alpha_prod_t
260
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
261
+
262
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
263
+
264
+ return variance
265
+
266
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
267
+ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
268
+ """
269
+ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
270
+ prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
271
+ s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
272
+ pixels from saturation at each step. We find that dynamic thresholding results in significantly better
273
+ photorealism as well as better image-text alignment, especially when using very large guidance weights."
274
+
275
+ https://arxiv.org/abs/2205.11487
276
+ """
277
+ dtype = sample.dtype
278
+ batch_size, channels, height, width = sample.shape
279
+
280
+ if dtype not in (torch.float32, torch.float64):
281
+ sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
282
+
283
+ # Flatten sample for doing quantile calculation along each image
284
+ sample = sample.reshape(batch_size, channels * height * width)
285
+
286
+ abs_sample = sample.abs() # "a certain percentile absolute pixel value"
287
+
288
+ s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
289
+ s = torch.clamp(
290
+ s, min=1, max=self.config.sample_max_value
291
+ ) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
292
+
293
+ s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
294
+ sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
295
+
296
+ sample = sample.reshape(batch_size, channels, height, width)
297
+ sample = sample.to(dtype)
298
+
299
+ return sample
300
+
301
+ def set_timesteps(self, num_inference_steps: int, lcm_origin_steps: int, device: Union[str, torch.device] = None):
302
+ """
303
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
304
+
305
+ Args:
306
+ num_inference_steps (`int`):
307
+ The number of diffusion steps used when generating samples with a pre-trained model.
308
+ """
309
+
310
+ if num_inference_steps > self.config.num_train_timesteps:
311
+ raise ValueError(
312
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
313
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
314
+ f" maximal {self.config.num_train_timesteps} timesteps."
315
+ )
316
+
317
+ self.num_inference_steps = num_inference_steps
318
+
319
+ # LCM Timesteps Setting: # Linear Spacing
320
+ c = self.config.num_train_timesteps // lcm_origin_steps
321
+ lcm_origin_timesteps = np.asarray(list(range(1, lcm_origin_steps + 1))) * c - 1 # LCM Training Steps Schedule
322
+ skipping_step = len(lcm_origin_timesteps) // num_inference_steps
323
+ timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps] # LCM Inference Steps Schedule
324
+
325
+ self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
326
+
327
+ def get_scalings_for_boundary_condition_discrete(self, t):
328
+ self.sigma_data = 0.5 # Default: 0.5
329
+
330
+ # By dividing 0.1: This is almost a delta function at t=0.
331
+ c_skip = self.sigma_data**2 / (
332
+ (t / 0.1) ** 2 + self.sigma_data**2
333
+ )
334
+ c_out = (( t / 0.1) / ((t / 0.1) **2 + self.sigma_data**2) ** 0.5)
335
+ return c_skip, c_out
336
+
337
+
338
+ def step(
339
+ self,
340
+ model_output: torch.FloatTensor,
341
+ timeindex: int,
342
+ timestep: int,
343
+ sample: torch.FloatTensor,
344
+ eta: float = 0.0,
345
+ use_clipped_model_output: bool = False,
346
+ generator=None,
347
+ variance_noise: Optional[torch.FloatTensor] = None,
348
+ return_dict: bool = True,
349
+ ) -> Union[LCMSchedulerOutput, Tuple]:
350
+ """
351
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
352
+ process from the learned model outputs (most often the predicted noise).
353
+
354
+ Args:
355
+ model_output (`torch.FloatTensor`):
356
+ The direct output from learned diffusion model.
357
+ timestep (`float`):
358
+ The current discrete timestep in the diffusion chain.
359
+ sample (`torch.FloatTensor`):
360
+ A current instance of a sample created by the diffusion process.
361
+ eta (`float`):
362
+ The weight of noise for added noise in diffusion step.
363
+ use_clipped_model_output (`bool`, defaults to `False`):
364
+ If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
365
+ because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
366
+ clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
367
+ `use_clipped_model_output` has no effect.
368
+ generator (`torch.Generator`, *optional*):
369
+ A random number generator.
370
+ variance_noise (`torch.FloatTensor`):
371
+ Alternative to generating noise with `generator` by directly providing the noise for the variance
372
+ itself. Useful for methods such as [`CycleDiffusion`].
373
+ return_dict (`bool`, *optional*, defaults to `True`):
374
+ Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
375
+
376
+ Returns:
377
+ [`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
378
+ If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
379
+ tuple is returned where the first element is the sample tensor.
380
+
381
+ """
382
+ if self.num_inference_steps is None:
383
+ raise ValueError(
384
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
385
+ )
386
+
387
+ # 1. get previous step value
388
+ prev_timeindex = timeindex + 1
389
+ if prev_timeindex < len(self.timesteps):
390
+ prev_timestep = self.timesteps[prev_timeindex]
391
+ else:
392
+ prev_timestep = timestep
393
+
394
+ # 2. compute alphas, betas
395
+ alpha_prod_t = self.alphas_cumprod[timestep]
396
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
397
+
398
+ beta_prod_t = 1 - alpha_prod_t
399
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
400
+
401
+ # 3. Get scalings for boundary conditions
402
+ c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
403
+
404
+ # 4. Different Parameterization:
405
+ parameterization = self.config.prediction_type
406
+
407
+ if parameterization == "epsilon": # noise-prediction
408
+ pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
409
+
410
+ elif parameterization == "sample": # x-prediction
411
+ pred_x0 = model_output
412
+
413
+ elif parameterization == "v_prediction": # v-prediction
414
+ pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
415
+
416
+ # 4. Denoise model output using boundary conditions
417
+ denoised = c_out * pred_x0 + c_skip * sample
418
+
419
+ # 5. Sample z ~ N(0, I), For MultiStep Inference
420
+ # Noise is not used for one-step sampling.
421
+ if len(self.timesteps) > 1:
422
+ noise = torch.randn(model_output.shape).to(model_output.device)
423
+ prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
424
+ else:
425
+ prev_sample = denoised
426
+
427
+ if not return_dict:
428
+ return (prev_sample, denoised)
429
+
430
+ return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
431
+
432
+
433
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
434
+ def add_noise(
435
+ self,
436
+ original_samples: torch.FloatTensor,
437
+ noise: torch.FloatTensor,
438
+ timesteps: torch.IntTensor,
439
+ ) -> torch.FloatTensor:
440
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
441
+ alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
442
+ timesteps = timesteps.to(original_samples.device)
443
+
444
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
445
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
446
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
447
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
448
+
449
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
450
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
451
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
452
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
453
+
454
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
455
+ return noisy_samples
456
+
457
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
458
+ def get_velocity(
459
+ self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
460
+ ) -> torch.FloatTensor:
461
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
462
+ alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
463
+ timesteps = timesteps.to(sample.device)
464
+
465
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
466
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
467
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
468
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
469
+
470
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
471
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
472
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
473
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
474
+
475
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
476
+ return velocity
477
+
478
+ def __len__(self):
479
+ return self.config.num_train_timesteps