patrickvonplaten
commited on
Commit
·
b62943d
1
Parent(s):
fb9c5d1
Deprecate old usage
Browse files
README.md
CHANGED
@@ -37,6 +37,32 @@ You can try out Latency Consistency Models directly on:
|
|
37 |
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model)
|
38 |
|
39 |
To run the model yourself, you can leverage the 🧨 Diffusers library:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
1. Install the library:
|
41 |
```
|
42 |
pip install diffusers transformers accelerate
|
@@ -47,7 +73,7 @@ pip install diffusers transformers accelerate
|
|
47 |
from diffusers import DiffusionPipeline
|
48 |
import torch
|
49 |
|
50 |
-
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
51 |
|
52 |
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
|
53 |
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
|
|
|
37 |
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model)
|
38 |
|
39 |
To run the model yourself, you can leverage the 🧨 Diffusers library:
|
40 |
+
1. Install the library:
|
41 |
+
```
|
42 |
+
pip install git+https://github.com/huggingface/diffusers.git
|
43 |
+
pip install transformers accelerate
|
44 |
+
```
|
45 |
+
|
46 |
+
2. Run the model:
|
47 |
+
```py
|
48 |
+
from diffusers import DiffusionPipeline
|
49 |
+
import torch
|
50 |
+
|
51 |
+
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")
|
52 |
+
|
53 |
+
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
|
54 |
+
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
|
55 |
+
|
56 |
+
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
57 |
+
|
58 |
+
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
|
59 |
+
num_inference_steps = 4
|
60 |
+
|
61 |
+
images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
|
62 |
+
```
|
63 |
+
|
64 |
+
## Usage (Deprecated)
|
65 |
+
|
66 |
1. Install the library:
|
67 |
```
|
68 |
pip install diffusers transformers accelerate
|
|
|
73 |
from diffusers import DiffusionPipeline
|
74 |
import torch
|
75 |
|
76 |
+
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main", revision="fb9c5d")
|
77 |
|
78 |
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
|
79 |
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
|