--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: trainer102b results: [] --- # trainer102b This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7253 - Precision: 0.2817 - Recall: 0.3571 - F1: 0.2958 - Accuracy: 0.3571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.9379 | 0.57 | 30 | 1.9074 | 0.2220 | 0.1786 | 0.0937 | 0.1786 | | 1.87 | 1.13 | 60 | 1.8163 | 0.2684 | 0.2857 | 0.2486 | 0.2857 | | 1.7421 | 1.7 | 90 | 1.7369 | 0.3393 | 0.3452 | 0.2957 | 0.3452 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2