File size: 2,918 Bytes
66a623b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: trainer3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# trainer3

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.0053        | 0.57  | 30   | 0.0010          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0011        | 1.13  | 60   | 0.0004          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0006        | 1.7   | 90   | 0.0003          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0004        | 2.26  | 120  | 0.0002          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0003        | 2.83  | 150  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0002        | 3.4   | 180  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0002        | 3.96  | 210  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0002        | 4.53  | 240  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 5.09  | 270  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 5.66  | 300  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 6.23  | 330  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 6.79  | 360  | 0.0001          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 7.36  | 390  | 0.0000          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 7.92  | 420  | 0.0000          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 8.49  | 450  | 0.0000          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 9.06  | 480  | 0.0000          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0001        | 9.62  | 510  | 0.0000          | 1.0       | 1.0    | 1.0 | 1.0      |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2