File size: 2,918 Bytes
66a623b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: trainer3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trainer3
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.0053 | 0.57 | 30 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0011 | 1.13 | 60 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0006 | 1.7 | 90 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0004 | 2.26 | 120 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0003 | 2.83 | 150 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0002 | 3.4 | 180 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0002 | 3.96 | 210 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0002 | 4.53 | 240 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 5.09 | 270 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 5.66 | 300 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 6.23 | 330 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 6.79 | 360 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 7.36 | 390 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 7.92 | 420 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 8.49 | 450 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 9.06 | 480 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 9.62 | 510 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|