Di Zhang commited on
Commit
93f1b6c
·
verified ·
1 Parent(s): 6e2ada0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -30
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
  - full
8
  - generated_from_trainer
9
  model-index:
10
- - name: longcot_sft_llama3.1_ZD_11_29_1
11
  results: []
12
  ---
13
 
@@ -16,45 +16,45 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # longcot_sft_llama3.1_ZD_11_29_1
18
 
19
- This model is a fine-tuned version of [/mnt/hwfile/ai4chem/CKPT/longcot_pt_llama3.1_ZD_11_29_1/](https://huggingface.co//mnt/hwfile/ai4chem/CKPT/longcot_pt_llama3.1_ZD_11_29_1/) on the longcot_sft_1 dataset.
20
 
21
- ## Model description
 
 
 
 
 
 
 
22
 
23
- More information needed
24
 
25
- ## Intended uses & limitations
26
 
27
- More information needed
 
28
 
29
- ## Training and evaluation data
30
 
31
- More information needed
32
 
33
- ## Training procedure
34
 
35
- ### Training hyperparameters
 
 
 
36
 
37
- The following hyperparameters were used during training:
38
- - learning_rate: 5e-06
39
- - train_batch_size: 1
40
- - eval_batch_size: 8
41
- - seed: 42
42
- - distributed_type: multi-GPU
43
- - num_devices: 24
44
- - gradient_accumulation_steps: 16
45
- - total_train_batch_size: 384
46
- - total_eval_batch_size: 192
47
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
- - lr_scheduler_type: cosine
49
- - num_epochs: 2.0
50
 
51
- ### Training results
 
 
 
 
 
 
 
52
 
53
 
 
 
 
 
54
 
55
- ### Framework versions
56
-
57
- - Transformers 4.46.2
58
- - Pytorch 2.3.1
59
- - Datasets 3.1.0
60
- - Tokenizers 0.20.1
 
7
  - full
8
  - generated_from_trainer
9
  model-index:
10
+ - name: SimpleBerry/LLaMA-O1-Supervised-1129
11
  results: []
12
  ---
13
 
 
16
 
17
  # longcot_sft_llama3.1_ZD_11_29_1
18
 
19
+ This model is a fine-tuned version of [SimpleBerry/LLaMA-O1-Base-1127](https://huggingface.co/SimpleBerry/LLaMA-O1-Base-1127) on the [SimpleBerry/OpenLongCoT-SFT](SimpleBerry/OpenLongCoT-SFT) dataset.
20
 
21
+ # Inference
22
+ ```Python
23
+ import json
24
+ import datasets
25
+ import torch
26
+ import random
27
+ import numpy as np
28
+ from transformers import AutoTokenizer, AutoModelForCausalLM
29
 
 
30
 
 
31
 
32
+ tokenizer = AutoTokenizer.from_pretrained("/mnt/hwfile/ai4chem/CKPT/longcot_sft_llama3.1_ZD_11_29_1/")
33
+ model = AutoModelForCausalLM.from_pretrained("/mnt/hwfile/ai4chem/CKPT/longcot_sft_llama3.1_ZD_11_29_1/",device_map='auto')
34
 
 
35
 
 
36
 
37
+ template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"
38
 
39
+ def llama_o1_template(data):
40
+ query = data['query']
41
+ text = template.format(content=query)
42
+ return text
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ def batch_predict(input_texts):
46
+ input_texts = [input_text.replace('<|end_of_text|>','') for input_text in input_texts]
47
+ inputs = tokenizer(input_texts, return_tensors="pt").to(model.device)
48
+ responses = model.generate(**inputs, max_new_tokens=1024)
49
+ response_texts = tokenizer.batch_decode(responses, skip_special_tokens=False)
50
+ # assitant_responses = [item[len(input_texts[i]):] for i,item in enumerate(response_texts)]
51
+ assitant_responses = [item for i,item in enumerate(response_texts)]
52
+ return assitant_responses
53
 
54
 
55
+ i = input()
56
+ input_texts = [llama_o1_template(i)]
57
+ assitant_responses = batch_predict(input_texts)
58
+ print(assitant_responses)
59
 
60
+ ```