File size: 23,477 Bytes
269a1c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
import pyworld as pw
import os
import math
import logging
import torch
import torchaudio
import torch.nn.functional as F
import numpy as np
from typing import Optional, Dict, Union, List, Tuple, Any
from functools import partial
from datetime import datetime
from datasets import load_dataset, Audio, concatenate_datasets
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
import evaluate
from dataclasses import dataclass
extractor = None
tokenizer = None
optimizer = None
scheduler = None
model = None
Residual = None
MultiheadA = None
Echo = None
metric = evaluate.load(path="wer")
@dataclass
class Dimensions:
vocab: int
text_ctx: int
text_dims: int
text_head: int
text_idx: int
mels: int
aud_ctx: int
aud_dims: int
aud_head: int
aud_idx: int
act: str
debug: List[str]
cross_attn: bool
features: List[str]
f0_rotary: bool
def align_f0(f0, ctx):
ctx = torch.tensor(ctx)
bat, length = f0.shape
if length == ctx:
return f0
frames = length / ctx
idx = torch.arange(ctx, device=f0.device)
idx = (idx * frames).long()
batch_idx = torch.arange(bat, device=f0.device).unsqueeze(1)
return f0[batch_idx, idx.unsqueeze(0).expand(bat, -1)]
@dataclass
class DataCollator:
tokenizer: Any
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
pad_token_id = tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else 0
bos_token_id = tokenizer.bos_token_id if hasattr(tokenizer, 'bos_token_id') else 1
batch = {}
if "spectrogram" in features[0] and features[0]["spectrogram"] is not None:
spectrogram_list = [f["spectrogram"] for f in features]
max_len_feat = max(f.shape[-1] for f in spectrogram_list)
pad_spectrogram = []
for feat in spectrogram_list:
current_len = feat.shape[-1]
padding = max_len_feat - current_len
if padding > 0:
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
else:
pad_feat = feat
pad_spectrogram.append(pad_feat)
batch["spectrogram"] = torch.stack(pad_spectrogram)
if "waveform" in features[0] and features[0]["waveform"] is not None:
waveform_list = [f["waveform"] for f in features]
max_len_wav = max(w.shape[-1] for w in waveform_list)
pad_waveforms = []
for wav in waveform_list:
current_len = wav.shape[-1]
padding = max_len_wav - current_len
if padding > 0:
if wav.ndim == 1:
wav = wav.unsqueeze(0)
pad_wav = F.pad(wav, (0, padding), mode='constant', value=pad_token_id)
else:
pad_wav = wav
pad_waveforms.append(pad_wav)
batch["waveform"] = torch.stack(pad_waveforms)
if "label" in features[0] and features[0]["label"] is not None:
labels_list = [f["label"] for f in features]
max_len = max(len(l) for l in labels_list)
all_ids = []
all_labels = []
for label in labels_list:
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
decoder_input = [bos_token_id] + label_list
label_eos = label_list + [pad_token_id]
input_len = max_len + 1 - len(decoder_input)
label_len = max_len + 1 - len(label_eos)
padded_input = decoder_input + [pad_token_id] * input_len
padded_labels = label_eos + [pad_token_id] * label_len
all_ids.append(padded_input)
all_labels.append(padded_labels)
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
if "pitch" in features[0] and features[0]["pitch"] is not None:
pitch_list = [f["pitch"] for f in features]
max_len_pitch = max(e.shape[-1] for e in pitch_list)
pad_pitch = []
for pitch in pitch_list:
current_len = pitch.shape[-1]
padding = max_len_pitch - current_len
if padding > 0:
pad_pitch_item = F.pad(pitch, (0, padding), mode='constant', value=pad_token_id)
else:
pad_pitch_item = pitch
pad_pitch.append(pad_pitch_item)
batch["pitch"] = torch.stack(pad_pitch)
if "f0" in features[0] and features[0]["f0"] is not None:
input_ids_batch = batch.get("input_ids", None)
if input_ids_batch is not None:
target_length = input_ids_batch.shape[-1]
aligned_list = []
original_list = []
for feature in features:
f0 = feature["f0"]
original_list.append(f0)
if f0.shape[-1] != target_length:
aligned_f0 = align_f0(f0.unsqueeze(0), target_length).squeeze(0)
else:
aligned_f0 = f0
aligned_list.append(aligned_f0)
batch["f0d"] = torch.stack(aligned_list)
batch["f0"] = torch.stack(original_list)
if "envelope" in features[0] and features[0]["envelope"] is not None:
env_list = [f["envelope"] for f in features]
max_len = max(f.shape[-1] for f in env_list)
pad_env = []
for feat in env_list:
current_len = feat.shape[-1]
padding = max_len_feat - current_len
if padding > 0:
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
else:
pad_feat = feat
pad_env.append(pad_feat)
batch["envelope"] = torch.stack(pad_env)
if "phase" in features[0] and features[0]["phase"] is not None:
ph_list = [f["phase"] for f in features]
max_len = max(f.shape[-1] for f in ph_list)
pad_ph = []
for feat in ph_list:
current_len = feat.shape[-1]
padding = max_len_feat - current_len
if padding > 0:
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
else:
pad_feat = feat
pad_ph.append(pad_feat)
batch["phase"] = torch.stack(pad_ph)
return batch
def hilbert_transform(x):
N = x.shape[-1]
xf = torch.fft.rfft(x)
h = torch.zeros(N // 2 + 1, device=x.device, dtype=x.dtype)
if N % 2 == 0:
h[0] = h[N//2] = 1
h[1:N//2] = 2
else:
h[0] = 1
h[1:(N+1)//2] = 2
return torch.fft.irfft(xf * h, n=N)
def analytic_signal(x):
return x + 1j * hilbert_transform(x)
def hilbert_transform_2d(x, dim=-1):
N = x.shape[dim]
if dim == -1 or dim == len(x.shape) - 1:
xf = torch.fft.rfft(x)
else:
xf = torch.fft.rfft(x, dim=dim)
h_shape = [1] * len(x.shape)
h_shape[dim] = N // 2 + 1
h = torch.zeros(h_shape, device=x.device, dtype=x.dtype)
if dim == -1 or dim == len(x.shape) - 1:
if N % 2 == 0:
h[..., 0] = h[..., -1] = 1
h[..., 1:-1] = 2
else:
h[..., 0] = 1
h[..., 1:] = 2
else:
pass
return torch.fft.irfft(xf * h, n=N, dim=dim)
def hilbert_transform_true_2d(x):
xf = torch.fft.rfft2(x)
h1, h2 = torch.meshgrid(
torch.fft.rfftfreq(x.shape[-2]) * 2 - 1,
torch.fft.rfftfreq(x.shape[-1]) * 2 - 1,
indexing='ij')
h = -1j / (math.pi * (h1 + 1j*h2))
h[0, 0] = 0
return torch.fft.irfft2(xf * h.to(x.device))
def process_spectrogram_with_hilbert(spec):
analytic = spec + 1j * hilbert_transform(spec)
envelope = torch.abs(analytic)
phase = torch.angle(analytic)
return envelope, phase
def load_wave(wave_data, sample_rate):
if isinstance(wave_data, str):
waveform, sr = torchaudio.load(uri=wave_data, normalize=False)
elif isinstance(wave_data, dict):
waveform = torch.tensor(data=wave_data["array"]).float()
sr = wave_data["sampling_rate"]
else:
raise TypeError("Invalid wave_data format.")
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
if sr != sample_rate:
original_length = waveform.shape[1]
target_length = int(original_length * (sample_rate / sr))
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
waveform = resampler(waveform)
return waveform.flatten()
def extract_features(batch, tokenizer, spectrogram, waveforms, pitch, frequency=False,
hop_length=128, fmin=0, fmax=8000, n_mels=128, n_fft=1024, sampling_rate=16000,
pad_mode="constant", center=True, power=2.0, window_fn=torch.hann_window, mel_scale="htk",
norm=None, normalized=False, downsamples=False, period=False, hilbert=False):
dtype = torch.float32
device = torch.device("cuda:0")
audio = batch["audio"]
sampling_rate = audio["sampling_rate"]
sr = audio["sampling_rate"]
wav = load_wave(wave_data=audio, sample_rate=sr)
if spectrogram:
transform = torchaudio.transforms.MelSpectrogram(
f_max=fmax,
f_min=fmin,
n_mels=n_mels,
sample_rate=sr,
n_fft=n_fft,
hop_length=hop_length,
norm=norm,
normalized=normalized,
power=power,
center=center,
mel_scale=mel_scale,
window_fn=window_fn,
pad_mode=pad_mode)
mel_spectrogram = transform(wav)
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
spec = (log_mel + 4.0) / 4.0
spec = torch.tensor(spec)
batch["spectrogram"] = spec
if hilbert:
envelope_list = []
phase_list = []
for ch_idx in range(spec.shape[0]):
envelope, phase = process_spectrogram_with_hilbert(spec[ch_idx])
envelope_list.append(envelope)
phase_list.append(phase)
batch["envelope"] = torch.stack(envelope_list)
batch["phase"] = torch.stack(phase_list)
wav_1d = wav.unsqueeze(0)
if waveforms:
batch["waveform"] = wav_1d
if pitch:
wav_np = wav.numpy().astype(np.float64)
f0, t = pw.dio(wav_np, sampling_rate,
frame_period=hop_length/sampling_rate*1000)
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
f0 = torch.from_numpy(f0).float()
batch["pitch"] = f0.unsqueeze(0)
if frequency:
wav_np = wav.numpy().astype(np.float64)
f0, t = pw.dio(wav_np, sampling_rate,
frame_period=hop_length/sampling_rate*1000)
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
f0 = f0
batch["f0"] = torch.from_numpy(f0).float()
if spectrogram and waveforms and pitch:
spec_mean = batch["spectrogram"].mean()
spec_std = batch["spectrogram"].std() + 1e-6
batch["spectrogram"] = (batch["spectrogram"] - spec_mean) / spec_std
wav_mean = batch["waveform"].mean()
wav_std = batch["waveform"].std() + 1e-6
batch["waveform"] = (batch["waveform"] - wav_mean) / wav_std
if batch["pitch"].max() > 1.0:
pitch_min = 50.0
pitch_max = 600.0
batch["pitch"] = (batch["pitch"] - pitch_min) / (pitch_max - pitch_min)
batch["label"] = tokenizer.encode(batch["transcription"], add_special_tokens=False)
return batch
def compute_metrics(eval_pred, compute_result: bool = True,
print_pred: bool = False, num_samples: int = 0, tokenizer=None, pitch=None, model=None):
pred_logits = eval_pred.predictions
label_ids = eval_pred.label_ids
if hasattr(pred_logits, "cpu"):
pred_logits = pred_logits.cpu()
if hasattr(label_ids, "cpu"):
label_ids = label_ids.cpu()
if isinstance(pred_logits, tuple):
pred_ids = pred_logits[0]
else:
pred_ids = pred_logits
if hasattr(pred_ids, "ndim") and pred_ids.ndim == 3:
if not isinstance(pred_ids, torch.Tensor):
pred_ids = torch.tensor(pred_ids)
pred_ids = pred_ids.argmax(dim=-1)
pred_ids = pred_ids.tolist()
if hasattr(label_ids, "tolist"):
label_ids = label_ids.tolist()
label_ids = [[0 if token == -100 else token for token in seq] for seq in label_ids]
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
if print_pred:
for i in range(min(num_samples, len(pred_str))):
print(f"Preds: {pred_str[i]}")
print(f"Label: {label_str[i]}")
print(f"preds: {pred_ids[i]}")
print(f"label: {label_ids[i]}")
print("--------------------------------")
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
if model is None:
global global_model
if 'global_model' in globals():
model = global_model
if model is not None:
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
if trainable_params > 0:
efficiency_score = (100 - wer) / trainable_params
else:
print("Warning: Zero trainable parameters detected")
efficiency_score = 0.0
else:
print("Warning: Model not available for parameter counting")
trainable_params = 0.0
efficiency_score = 0.0
if hasattr(wer, "item"):
wer = wer.item()
metrics = {
"wer": float(wer),
"trainable_params_M": float(trainable_params),
"efficiency_score": float(efficiency_score),
}
return metrics
logger = logging.getLogger(__name__)
def create_model(param: Dimensions) -> Echo:
model = Echo(param).to('cuda')
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
logger.info(f"Trainable parameters: {trainable_params:,}")
logger.info(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print(f"Total parameters: {total_params:,}")
return model
def setup_tokenizer(token: str, local_tokenizer_path: str = "D:/newmodel/model/tokenn/"):
from tokenizers import Tokenizer
tokenizer = Tokenizer.from_file(f"{local_tokenizer_path}/tokenizer.json")
orig_encode = tokenizer.encode
def enc(text, add_special_tokens=True):
ids = orig_encode(text).ids
if not add_special_tokens:
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
ids = [id for id in ids if id not in sp_ids]
return ids
def bdec(ids_list, skip_special_tokens=True):
results = []
for ids in ids_list:
if skip_special_tokens:
ids = [id for id in ids if id not in [0, 1, 2]]
results.append(tokenizer.decode(ids))
return results
def save_pretrained(save_dir):
os.makedirs(save_dir, exist_ok=True)
tokenizer.save(f"{save_dir}/tokenizer.json")
tokenizer.encode = enc
tokenizer.batch_decode = bdec
tokenizer.save_pretrained = save_pretrained
tokenizer.pad_token_id = 0
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
return tokenizer
def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_config: Optional[Dict] = None) -> Tuple[any, any]:
if dataset_config is None:
dataset_config = {
"spectrogram": True,
"waveforms": True,
"pitch": True,
"frequency": True,
"downsamples": True,
"hop_length": 128,
"fmin": 50,
"fmax": 2000,
"n_mels": 128,
"n_fft": 1024,
"sampling_rate": 16000,
}
dataset = load_dataset(
"google/fleurs",
"en_us",
token=token,
trust_remote_code=True,
streaming=False)
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
if sanity_check:
dataset = dataset["test"].take(10)
dataset = dataset.select_columns(["audio", "transcription"])
logger.info(f"Sanity dataset size: {dataset.num_rows}")
print(f"Sanity dataset size: {dataset.num_rows}")
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
dataset = dataset.map(
function=prepare_fn,
remove_columns=["audio", "transcription"]
).with_format(type="torch")
train_dataset = dataset
test_dataset = dataset
else:
def filter_func(x):
return (0 < len(x["transcription"]) < 512 and
len(x["audio"]["array"]) > 0 and
len(x["audio"]["array"]) < 1500 * 160)
dataset = dataset.filter(filter_func).shuffle(seed=4)
logger.info(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
print(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
columns_to_remove = list(next(iter(dataset.values())).features)
train_dataset = dataset["train"]
test_dataset = dataset["test"].take(50)
logger.info(f"Train dataset size: {train_dataset.num_rows}, Test dataset size: {test_dataset.num_rows}")
train_dataset = train_dataset.map(
function=prepare_fn,
remove_columns=columns_to_remove
).with_format(type="torch")
test_dataset = test_dataset.map(
function=prepare_fn,
remove_columns=columns_to_remove
).with_format(type="torch")
return train_dataset, test_dataset
def get_training_args(
log_dir: str,
batch_eval_metrics: bool = False,
max_steps: int = 10,
save_steps: int = 1000,
eval_steps: int = 1,
warmup_steps: int = 0,
num_train_epochs: int = 1,
logging_steps: int = 1,
eval_on_start: bool = False,
learning_rate: float = 1e-4,
weight_decay: float = 0.01,
max_grad_norm: float = 1.0,
) -> Seq2SeqTrainingArguments:
return Seq2SeqTrainingArguments(
output_dir=log_dir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=1,
eval_accumulation_steps=1,
tf32=True,
bf16=True,
eval_strategy="steps",
save_strategy="steps",
max_steps=max_steps,
save_steps=save_steps,
eval_steps=eval_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_train_epochs,
logging_steps=logging_steps,
logging_dir=log_dir,
logging_strategy="steps",
report_to=["tensorboard"],
push_to_hub=False,
disable_tqdm=False,
save_total_limit=1,
label_names=["labels"],
optim="adamw_torch",
lr_scheduler_type="cosine",
learning_rate=learning_rate,
weight_decay=weight_decay,
save_safetensors=False,
eval_on_start=eval_on_start,
batch_eval_metrics=batch_eval_metrics,
max_grad_norm=max_grad_norm,
)
def main():
token = ""
log_dir = os.path.join('./output/logs', datetime.now().strftime(format='%m-%d_%H'))
os.makedirs(name=log_dir, exist_ok=True)
tokenizer = setup_tokenizer(token)
def sanity(sanity: bool):
if sanity:
training_args = get_training_args(
log_dir,
batch_eval_metrics = False,
max_steps = 10,
save_steps = 0,
eval_steps = 1,
warmup_steps = 0,
logging_steps = 1,
eval_on_start = False,
learning_rate = 5e-6,
weight_decay = 0.01,
)
else:
training_args = get_training_args(
log_dir,
batch_eval_metrics = False,
max_steps = 1000,
save_steps = 1000,
eval_steps = 100,
warmup_steps = 100,
logging_steps = 10,
eval_on_start = False,
learning_rate = 2.5e-4,
weight_decay = 0.01,
)
return training_args
param = Dimensions(
mels=128,
aud_ctx=1500,
aud_head=4,
aud_dims=512,
aud_idx=4,
vocab=40000,
text_ctx=512,
text_head=4,
text_dims=512,
text_idx=4,
act="swish",
debug={},#{"encoder", "decoder", "residual", "rotary"},
cross_attn=True,
f0_rotary=False,
features = ["spectrogram"]#, "waveform", "pitch", "f0", "envelope", "phase"],
)
sanity_check = False
training_args = sanity(sanity_check)
dataset_config = {
"spectrogram": True,
"waveforms": False,
"pitch": False,
"downsamples": False,
"frequency": True,
"hilbert": False,
"hop_length": 128,
"fmin": 150,
"fmax": 2000,
"n_mels": 128,
"n_fft": 1024,
"sampling_rate": 16000,
"pad_mode": "constant",
"center": True,
"power": 2.0,
"window_fn": torch.hann_window,
"mel_scale": "htk",
"norm": None,
"normalized": False}
model = create_model(param)
global global_model
global_model = model
metrics_fn = partial(compute_metrics, print_pred=False, num_samples=5,
tokenizer=tokenizer, model=model)
print(f"{'Sanity check' if sanity_check else 'Training'} mode")
train_dataset, test_dataset = prepare_datasets(
tokenizer=tokenizer,
token=token,
sanity_check=sanity_check,
dataset_config=dataset_config)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=DataCollator(tokenizer=tokenizer),
compute_metrics=metrics_fn,
)
model.init_weights()
trainer.train()
if __name__ == "__main__":
main()
|