File size: 9,966 Bytes
6067697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch

class MaxFactor(torch.optim.Optimizer):
    def __init__(self, params, lr=0.01, beta2_decay=-0.8, eps=(1e-10, 1e-3), d=1.0, 
                 weight_decay=0.01, gamma=0.99, max=False):
        
        defaults = dict(lr=lr, beta2_decay=beta2_decay, eps=eps, d=d, weight_decay=weight_decay, 
                        gamma=gamma, max=max)
        super().__init__(params=params, defaults=defaults)

    @staticmethod
    def _rms(tensor):
        return tensor.norm() / (tensor.numel() ** 0.5)

    @torch.no_grad()
    def step(self, closure=None):
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad, grads, row_vars, col_vars, v, state_steps = [], [], [], [], [], []
            eps1, eps2 = group["eps"]
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.dtype in {torch.float16, torch.bfloat16}:
                    grad = grad.float()

                state = self.state[p]
                if len(state) == 0:
                    state["step"] = torch.tensor(0.0, dtype=torch.float32)
                    if p.grad.dim() > 1:
                        row_shape, col_shape = list(p.grad.shape), list(p.grad.shape)
                        row_shape[-1], col_shape[-2] = 1, 1
                        state["row_var"], state["col_var"] = p.grad.new_zeros(row_shape), p.grad.new_zeros(col_shape)
                    state["v"] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    state["RMS"] = self._rms(p).item()

                row_vars.append(state.get("row_var", None))
                col_vars.append(state.get("col_var", None))
                v.append(state["v"])
                state_steps.append(state["step"])
                params_with_grad.append(p)
                grads.append(grad)

            for i, param in enumerate(params_with_grad):
                grad = grads[i]

                if group["max"]:
                    grad = -grad
                step_t, row_var, col_var, vi = state_steps[i], row_vars[i], col_vars[i], v[i]

                if eps1 is None:
                    eps1 = torch.finfo(param.dtype).eps
                    
                step_t += 1
                step_float = step_t.item()
                
                one_minus_beta2_t = step_float ** group["beta2_decay"]
                state["RMS"] = self._rms(param).item()
                
                rho_t = min(group["lr"], 1 / (step_float ** 0.5))
                alpha = max(eps2, param.norm(2).item() / (param.numel() ** 0.5)) * rho_t

                if group["weight_decay"] != 0:
                    param.mul_(1 - group["lr"] * group["weight_decay"])

                if grad.dim() > 1:
                    row_mean = torch.norm(grad, dim=-1, keepdim=True).square_().div_(grad.size(-1) + 1e-8)
                    row_var.lerp_(row_mean, one_minus_beta2_t)
                    col_mean = torch.norm(grad, dim=-2, keepdim=True).square_().div_(grad.size(-2) + 1e-8)
                    col_var.lerp_(col_mean, one_minus_beta2_t)
                    var_estimate = row_var @ col_var
                    max_row_var = row_var.max(dim=-2, keepdim=True)[0]  
                    var_estimate.div_(max_row_var.clamp_(min=eps1))
                else:
                    vi.mul_(group["gamma"]).add_(grad ** 2, alpha=1 - group["gamma"])
                    var_estimate = vi

                update = var_estimate.clamp_(min=eps1 * eps1).rsqrt_().mul_(grad)
                update = update.div_(torch.norm(update, float('inf')).clamp_(min=eps1))
                denom = max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * group["d"]))
                
                param.add_(-alpha / denom * update.sign() * update.abs().max(dim=-1, keepdim=True)[0])
        return loss

# class MaxFactor(torch.optim.Optimizer):
#     __version__ = "1.0"
    
#     def __init__(self, params, lr=0.025, beta2_decay=-0.8, eps=(1e-10, 1e-4), d=1.0, 
#                  weight_decay=0.025, gamma=0.99, max=False, min_lr=1e-7):
        
#         print(f"Using MaxFactor optimizer v{self.__version__}")
        
#         defaults = dict(lr=lr, beta2_decay=beta2_decay, eps=eps, d=d, weight_decay=weight_decay, 
#                         gamma=gamma, max=max, min_lr=min_lr)
#         super().__init__(params=params, defaults=defaults)

#     def get_lr(self):
#         """Return current learning rates for all parameter groups."""
#         param_specific_lrs = []

#         for group in self.param_groups:
#             group_lrs = []
#             min_lr = group.get("min_lr", 1e-7)
#             eps1, eps2 = group["eps"]
#             for p in group["params"]:
#                 if p.grad is None:
#                     continue
#                 state = self.state[p]
#                 if "step" not in state:
#                     continue
#                 step_float = state["step"].item()
#                 # Calculate base learning rate (same as in step method)
#                 rho_t = max(min_lr, min(group["lr"], 1.0 / (step_float ** 0.5)))
                
#                 # Calculate parameter-specific scaling
#                 param_norm = (p.norm() / (p.numel() ** 0.5 + 1e-12)).item()
#                 alpha = max(eps2, param_norm) * rho_t
#                 group_lrs.append(alpha)
#             if group_lrs:
#                 param_specific_lrs.append(sum(group_lrs) / len(group_lrs))
#             else:
#                 param_specific_lrs.append(group["lr"])
#         return param_specific_lrs
    
#     def get_last_lr(self):
#         return self.get_lr()

#     @torch.no_grad()
#     def step(self, closure=None):
#         loss = None
#         if closure is not None:
#             with torch.enable_grad():
#                 loss = closure()

#         for group in self.param_groups:
#             params_with_grad, grads, row_vars, col_vars, v, state_steps = [], [], [], [], [], []
#             eps1, eps2 = group["eps"]
#             min_lr = group.get("min_lr", 1e-7)
            
#             for p in group["params"]:
#                 if p.grad is None:
#                     continue
                    
#                 grad = p.grad
#                 if grad.dtype in {torch.float16, torch.bfloat16}:
#                     grad = grad.float()

#                 state = self.state[p]
#                 if len(state) == 0:
#                     state["step"] = torch.tensor(0.0, dtype=torch.float32)
#                     if p.dim() > 1:
#                         row_shape, col_shape = list(p.shape), list(p.shape)
#                         row_shape[-1], col_shape[-2] = 1, 1
#                         state["row_var"] = p.new_zeros(row_shape)
#                         state["col_var"] = p.new_zeros(col_shape)
#                     state["v"] = torch.zeros_like(p, memory_format=torch.preserve_format)

#                 row_vars.append(state.get("row_var", None))
#                 col_vars.append(state.get("col_var", None))
#                 v.append(state["v"])
#                 state_steps.append(state["step"])
#                 params_with_grad.append(p)
#                 grads.append(grad)

#             for i, param in enumerate(params_with_grad):
#                 grad = grads[i]
#                 state = self.state[param]

#                 if group["max"]:
#                     grad = -grad
                    
#                 step_t = state_steps[i]
#                 row_var, col_var, vi = row_vars[i], col_vars[i], v[i]

#                 if eps1 is None:
#                     eps1 = torch.finfo(param.dtype).eps
                
#                 step_t += 1
#                 step_float = step_t.item()
                
#                 one_minus_beta2_t = min(0.999, max(0.001, step_float ** group["beta2_decay"]))
                
#                 rho_t = max(min_lr, min(group["lr"], 1.0 / (step_float ** 0.5)))
#                 alpha = max(eps2, (param.norm() / (param.numel() ** 0.5 + 1e-12)).item()) * rho_t

#                 if group["weight_decay"] > 0:
#                     param.mul_(1 - group["lr"] * group["weight_decay"])

#                 if grad.dim() > 1:
#                     row_mean = torch.norm(grad, dim=-1, keepdim=True).square_()
#                     row_mean.div_(grad.size(-1) + eps1)
                    
#                     row_var.lerp_(row_mean, one_minus_beta2_t)
                    
#                     col_mean = torch.norm(grad, dim=-2, keepdim=True).square_()
#                     col_mean.div_(grad.size(-2) + eps1)
                    
#                     col_var.lerp_(col_mean, one_minus_beta2_t)
                    
#                     var_estimate = row_var @ col_var
#                     max_row_var = row_var.max(dim=-2, keepdim=True)[0]  
#                     var_estimate.div_(max_row_var.clamp_(min=eps1))
#                 else:
#                     vi.mul_(group["gamma"]).add_(grad.square_(), alpha=1 - group["gamma"])
#                     var_estimate = vi

#                 update = var_estimate.clamp_(min=eps1 * eps1).rsqrt_().mul_(grad)
                
#                 inf_norm = torch.norm(update, float('inf'))
#                 if inf_norm > 0:
#                     update.div_(inf_norm.clamp_(min=eps1))
                
#                 denom = max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * group["d"]))
                
#                 if param.dim() > 1:
#                     max_vals = update.abs().max(dim=-1, keepdim=True)[0]
#                     param.add_(-alpha / denom * update.sign() * max_vals)
#                 else:
#                     param.add_(-alpha / denom * update)
                
#                 state["step"] = step_t
                
#         return loss