asr-model / model.py
Sin2pi's picture
Update model.py
71514c3 verified
raw
history blame
44.8 kB
import pyworld as pw
import os
import math, random
import warnings
import logging
import gzip
import base64
import torch
import torchaudio
import torch.nn.functional as F
import torch.nn.init as init
from torch import nn, Tensor
import numpy as np
from typing import Optional, Dict, Union, List, Tuple, Any
from functools import partial
from datetime import datetime
from datasets import load_dataset, Audio, concatenate_datasets
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
import transformers
import evaluate
from dataclasses import dataclass
import matplotlib.pyplot as plt
device = torch.device(device="cuda:0")
dtype = torch.float32
extractor = None
tokenizer = None
optimizer = None
scheduler = None
model = None
Residual = None
MultiheadA = None
@dataclass
class Dimensions:
vocab: int
text_ctx: int
text_dims: int
text_head: int
text_idx: int
mels: int
aud_ctx: int
aud_dims: int
aud_head: int
aud_idx: int
act: str
debug: List[str]
cross_attn: bool
features: List[str]
f0_rotary: bool
def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_length=160,
title="", markers=None, marker_labels=None,
show_voiced_regions=True, show_energy=False):
num_plots = sum([x is not None, w is not None, p is not None, per is not None])
if num_plots == 0:
raise ValueError("No data to plot. Please provide at least one input tensor.")
time_spans = []
if w is not None:
w_np = w[sample_idx].detach().cpu().numpy()
if w_np.ndim > 1:
w_np = w_np.squeeze()
time_spans.append(len(w_np) / sr)
if x is not None:
x_np = x[sample_idx].detach().cpu().numpy()
if x_np.shape[0] < x_np.shape[1]:
x_np = x_np.T
time_spans.append(x_np.shape[0] * hop_length / sr)
if p is not None:
p_np = p[sample_idx].detach().cpu().numpy()
if p_np.ndim > 1:
p_np = p_np.squeeze()
time_spans.append(len(p_np) * hop_length / sr)
if per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
time_spans.append(len(per_np) * hop_length / sr)
max_time = max(time_spans) if time_spans else 0
fig, axs = plt.subplots(num_plots, 1, figsize=(14, 4*num_plots), sharex=True)
if num_plots == 1:
axs = [axs]
if show_voiced_regions and per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
t_per = np.arange(len(per_np)) * hop_length / sr
threshold = 0.5
for ax in axs:
for i in range(len(per_np)-1):
if per_np[i] > threshold:
ax.axvspan(t_per[i], t_per[i+1], color='lightblue', alpha=0.2, zorder=0)
current_ax = 0
if w is not None:
w_np = w[sample_idx].detach().cpu().numpy()
if w_np.ndim > 1:
w_np = w_np.squeeze()
t = np.arange(len(w_np)) / sr
axs[current_ax].plot(t, w_np, color="tab:blue")
if show_energy:
frame_length = hop_length
hop_length_energy = hop_length // 2
energy = []
for i in range(0, len(w_np)-frame_length, hop_length_energy):
frame = w_np[i:i+frame_length]
energy.append(np.sqrt(np.mean(frame**2)))
energy = np.array(energy)
energy = energy / np.max(energy) * 0.8 * max(abs(w_np.min()), abs(w_np.max()))
t_energy = np.arange(len(energy)) * hop_length_energy / sr
axs[current_ax].plot(t_energy, energy, color="red", alpha=0.7, label="Energy")
axs[current_ax].legend(loc='upper right')
axs[current_ax].set_title("Waveform")
axs[current_ax].set_ylabel("Amplitude")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
current_ax += 1
if x is not None:
x_np = x[sample_idx].detach().cpu().numpy()
if x_np.shape[0] < x_np.shape[1]:
x_np = x_np.T
im = axs[current_ax].imshow(x_np.T, aspect="auto", origin="lower", cmap="magma",
extent=[0, x_np.shape[0]*hop_length/sr, 0, x_np.shape[1]])
axs[current_ax].set_title("Spectrogram")
axs[current_ax].set_ylabel("Mel Bin")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
current_ax += 1
if p is not None:
p_np = p[sample_idx].detach().cpu().numpy()
if p_np.ndim > 1:
p_np = p_np.squeeze()
t_p = np.arange(len(p_np)) * hop_length / sr
axs[current_ax].plot(t_p, p_np, color="tab:green")
axs[current_ax].set_title("Pitch")
axs[current_ax].set_ylabel("Frequency (Hz)")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
axs[current_ax].set_ylim([0, min(1000, p_np.max() * 1.2)])
current_ax += 1
if per is not None:
per_np = per[sample_idx].detach().cpu().numpy()
if per_np.ndim > 1:
per_np = per_np.squeeze()
t_per = np.arange(len(per_np)) * hop_length / sr
axs[current_ax].plot(t_per, per_np, color="tab:red")
axs[current_ax].set_title("Period (Voice Activity)")
axs[current_ax].set_ylabel("periodocity")
axs[current_ax].set_xlim([0, max_time])
axs[current_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
axs[current_ax].set_ylim([-0.05, 1.05])
axs[current_ax].axhline(y=0.5, color='k', linestyle='--', alpha=0.3)
if markers is not None:
for i, t in enumerate(markers):
label = marker_labels[i] if marker_labels and i < len(marker_labels) else None
for ax in axs:
ax.axvline(x=t, color='k', linestyle='-', alpha=0.7, label=label if i == 0 else None)
if marker_labels:
axs[0].legend(loc='upper right', fontsize='small')
axs[-1].set_xlabel("Time (s)")
fig.suptitle(title, fontsize=16)
plt.tight_layout(rect=[0, 0, 1, 0.97])
plt.show()
return fig
def exists(v):
return v is not None
def default(v, b):
return v if exists(v) else b
class Conv1d(nn.Conv1d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias) -> Tensor:
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
class Conv2d(nn.Conv2d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias) -> Tensor:
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
class Linear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
init.xavier_uniform_(self.linear.weight)
if bias:
init.zeros_(self.linear.bias)
def forward(self, x: Tensor) -> Tensor:
return self.linear(x)
class RMSNorm(nn.Module):
def __init__(self, dims: Union[int, Tensor, List, Tuple],
eps = 1e-8, elementwise_affine = True):
super(RMSNorm, self).__init__()
if isinstance(dims, int):
self.normalized_shape = (dims,)
else:
self.normalized_shape = tuple(dims)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.empty(self.normalized_shape))
init.ones_(self.weight)
else:
self.register_parameter("weight", None)
def forward(self, x):
return F.rms_norm(x, self.normalized_shape, self.weight, self.eps)
def LayerNorm(x: Tensor, normalized_shape: Union[int, Tensor, List, Tuple],
weight: Optional[Tensor] = None, bias: Optional[Tensor] = None,
eps: float = 1e-5) -> Tensor:
return F.layer_norm(x, normalized_shape, weight, bias, eps)
def get_device():
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def get_dtype():
return torch.float32 if torch.cuda.is_available() else torch.float64
def get_tox():
return {"device": get_device(), "dtype": get_dtype()}
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
class ParameterCycler:
def __init__(self, parameters):
self.parameters = parameters
self.current_idx = 0
def toggle_requires_grad(self):
x = random.randint(0, len(self.parameters) - 1)
for x, param in enumerate(self.parameters):
param.requires_grad = (x == self.current_idx)
print(f"Parameter {x}: requires_grad={param.requires_grad}")
self.current_idx = (self.current_idx + 1) % len(self.parameters)
def extract_f0(waveform, sampling_rate=16000, hop_length=128, device="cuda:0"):
"""Extract F0 from waveform - handle various input types"""
if waveform is None:
return None
if isinstance(waveform, list):
if len(waveform) == 0:
return None
waveform = waveform[0]
print(f"DEBUG: Converted list to tensor, new type: {type(waveform)}")
if not isinstance(waveform, torch.Tensor):
waveform = torch.tensor(waveform)
if isinstance(waveform, torch.Tensor):
if waveform.dim() == 3:
waveform = waveform.squeeze(1)
if waveform.dim() == 2:
waveform = waveform[0]
wav_np = waveform.detach().cpu().numpy().astype(np.float64)
else:
wav_np = np.array(waveform).astype(np.float64)
f0, t = pw.dio(wav_np, sampling_rate,
frame_period=hop_length/sampling_rate*1000)
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
f0_tensor = torch.from_numpy(f0).float().to(device)
return f0_tensor.unsqueeze(0).unsqueeze(0)
class rotary(nn.Module):
_seen = set()
def __init__(self, dims, max_ctx=1500, theta=10000, learned_freq=False, radii=False,
learned_radius=False, learned_theta=False, learned_pitch=False, debug: List[str] = [], use_pbias = False):
super().__init__()
self.use_pbias = use_pbias
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.dtype = torch.float32
self.debug = debug
self._counter = 0
self.dims = dims
self.max_ctx = max_ctx
self.radii = radii
f0_factor = 0.5
self.learned_adaptation: bool = False
pitch_scale = 1.0
radius = 1
if self.learned_adaptation:
self.f0_scale = nn.Parameter(torch.tensor(f0_factor, device=self.device, dtype=self.dtype), requires_grad=True)
else:
self.register_buffer('f0_scale', torch.tensor(f0_factor))
self.theta = nn.Parameter(torch.tensor(theta, device=self.device, dtype=self.dtype), requires_grad=True)
self.pitch_scale = nn.Parameter(torch.tensor(pitch_scale, device=self.device, dtype=self.dtype), requires_grad=True)
freqs = 1. / (theta ** (torch.arange(0, dims, 2, device=self.device, dtype=self.dtype)[:(dims // 2)].float() / dims))
self.freqs = nn.Parameter(torch.tensor(freqs, device=self.device, dtype=self.dtype), requires_grad=True)
self.radius = nn.Parameter(torch.ones(radius, device=self.device, dtype=self.dtype), requires_grad=True)
def forward(self, x=None, layer=None, enc=None) -> Tensor:
f0 = enc.get("f0") if enc else None
if isinstance(x, int):
ctx = x
else:
batch, ctx, dims = x.shape
t = torch.arange(ctx, device=self.device).float()
if f0 is not None:
f0_mean=f0.mean()+1e-8
theta=f0_mean*self.pitch_scale
freqs = 1. / (theta ** (torch.arange(0, self.dims, 2, device=self.device, dtype=self.dtype)[:(self.dims // 2)].float() /self.dims))
else:
freqs = self.freqs
freqs = torch.einsum('i,j->ij', t, freqs)
freqs = freqs.float()
# print(f"{layer} : {f0_mean} : {theta:.2f} : {ctx} ")
if self.radii:
# radius = self.align_f0(f0, ctx)
radius = enc.get("f0d") if enc else self.radius
radius = radius.float()
else:
radius = self.radius
# freqs = torch.polar(self.radius.unsqueeze(-1), freqs)
freqs = torch.polar(radius.unsqueeze(-1), freqs)
if "rotary" in self.debug:
if f0 is not None:
key = f"{self._counter}_{theta:.2f}"
if key not in rotary._seen:
if not hasattr(self, '_prev_f0_theta'):
self._prev_f0_theta = theta
# print(f"Step {self._counter}: Theta: {theta:.2f} Hz")
elif abs(self._prev_f0_theta - theta) > 100.0:
# print(f"Step {self._counter}: Theta: {theta:.2f} Hz, freqs: {freqs.shape}")
print(f"{layer} : {f0_mean} : Theta: {theta:.2f} : {theta:.2f} : {ctx} ")
if self.radii:
print(f"radius: {radius} Hz, enc: {layer} Hz, ctx: {ctx}")
self._prev_f0_theta = theta
rotary._seen.add(key)
self._counter += 1
return freqs
@staticmethod
def apply_rotary(x, freqs):
multihead_format = len(freqs.shape) == 4
if multihead_format:
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1)
x1 = x1 * freqs
x1 = torch.view_as_real(x1).flatten(-2)
return torch.cat([x1.type_as(x), x2], dim=-1)
else:
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
if x.ndim == 2:
x1 = x1.unsqueeze(0)
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1)
x1 = x1 * freqs
x1 = torch.view_as_real(x1).flatten(-2)
x1 = x1.squeeze(0)
return torch.cat([x1.type_as(x), x2], dim=-1)
else:
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1)
x1 = x1 * freqs
x1 = torch.view_as_real(x1).flatten(-2)
return torch.cat([x1.type_as(x), x2], dim=-1)
class MultiheadA(nn.Module):
_seen = set()
rbf = False
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
zero_val: float = 0.0001, minz: float = 0.0, maxz: float = 0.001, debug: List[str] = [], optim_attn=False):
super(MultiheadA, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.q = Linear(dims, dims)
self.k = Linear(dims, dims, bias=False)
self.v = Linear(dims, dims)
self.o = Linear(dims, dims)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.dtype = torch.float32
self.debug = debug
self._counter = 0
self.pad_token = 0
self.rotary_emb = rotary_emb
self.minz = minz
self.maxz = maxz
self.zero_val = zero_val
self.optim_attn = optim_attn
self.fzero = nn.Parameter(torch.tensor(zero_val, dtype=torch.float32), requires_grad=False)
if rotary_emb:
self.rope = rotary(
dims=self.head_dim,
debug = debug,
radii=False,
learned_pitch=False,
learned_freq=False,
learned_theta=False,
learned_radius=False,
)
else:
self.rope = None
def enhanced_attention_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
scale = (self.dims // self.head) ** -0.25
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
if rbf_ratio <= 0.0:
return dot_scores
q_norm = q.pow(2).sum(dim=-1, keepdim=True)
k_norm = k.pow(2).sum(dim=-1, keepdim=True)
qk = torch.matmul(q, k.transpose(-1, -2))
dist_sq = q_norm + k_norm.transpose(-1, -2) - 2 * qk
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
def forward(self, x: Tensor, xa: Tensor = None, mask: Tensor = None, feat=None, layer = None) -> tuple:
scale = (self.dims // self.head) ** -0.25
z = xa if xa is not None else x
q = self.q(x).to(x.dtype)
k = self.k(z).to(x.dtype)
v = self.v(z).to(x.dtype)
batch, ctx, dims = q.shape
if self.rotary_emb:
qf = self.rope(q.size(1), layer=layer, feat=feat)
kf = self.rope(k.size(1), layer=layer, feat=feat)
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
q = self.rope.apply_rotary(q, qf)
k = self.rope.apply_rotary(k, kf)
else:
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
batch, head, ctx, head_dim = q.shape
if self.rbf:
qk = self.enhanced_attention_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
qk = (q * scale) @ (k * scale).transpose(-1, -2)
if self.rope.use_pbias:
pbias = self.rope.pbias(feat.get("f0"))
if pbias is not None:
qk = qk + pbias[:,:,:q.shape[2],:q.shape[2]]
token_ids = k[:, :, :, 0]
zscale = torch.ones_like(token_ids)
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
zscale[token_ids.float() == self.pad_token] = fzero.to(q.device, q.dtype)
if mask is not None:
mask = mask[:q.shape[2], :q.shape[2]]
qk = qk + mask.unsqueeze(0).unsqueeze(0) * zscale.unsqueeze(-2).expand(qk.shape)
qk = qk * zscale.unsqueeze(-2)
w = F.softmax(qk, dim=-1).to(q.dtype)
wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
if "multihead" in self.debug and self._counter % 100 == 0:
print(f"Step {self._counter}: Using rotary embeddings: {self.rotary_emb}")
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape}")
print(f"Attention shape: {qk.shape}, wv shape: {wv.shape}")
self._counter += 1
return self.o(wv), qk.detach()
class t_gate(nn.Module):
def __init__(self, dims, num_types=4):
super().__init__()
self.gate_projections = nn.ModuleList([
nn.Sequential(Linear(dims, 1), nn.Sigmoid())
for _ in range(num_types)])
self.type_classifier = nn.Sequential(
Linear(dims, num_types),
nn.Softmax(dim=-1))
def forward(self, x):
type_probs = self.type_classifier(x)
gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
comb_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
return comb_gate
class m_gate(nn.Module):
def __init__(self, dims, mem_size=64):
super().__init__()
self.m_key = nn.Parameter(torch.randn(mem_size, dims))
self.m_val = nn.Parameter(torch.randn(mem_size, 1))
self.gate_proj = nn.Sequential(Linear(dims, dims//2), nn.SiLU(), Linear(dims//2, 1))
def forward(self, x):
d_gate = torch.sigmoid(self.gate_proj(x))
attention = torch.matmul(x, self.m_key.transpose(0, 1))
attention = F.softmax(attention / math.sqrt(x.shape[-1]), dim=-1)
m_gate = torch.matmul(attention, self.m_val)
m_gate = torch.sigmoid(m_gate)
return 0.5 * (d_gate + m_gate)
class c_gate(nn.Module):
def __init__(self, dims):
super().__init__()
self.s_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.w_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.p_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
self.integ = Linear(dims*3, dims)
def forward(self, x, features):
s_feat = features.get("spectrogram", x)
w_feat = features.get("waveform", x)
p_feat = features.get("pitch", x)
s = self.s_gate(x) * s_feat
w = self.w_gate(x) * w_feat
p = self.p_gate(x) * p_feat
comb = torch.cat([s, w, p], dim=-1)
return self.integ(comb)
class Residual(nn.Module):
_seen = set()
def __init__(self, ctx, dims, head, act, cross_attn=True, debug: List[str] = [],
tgate=True, mgate=False, cgate=False, mem_size=512, features=None):
super().__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.dtype = torch.float32
self.dims = dims
self.head = head
self.ctx = ctx
self.head_dim = dims // head
self.cross_attn = cross_attn
self.features = features
self.debug = debug
self._counter = 0
self.dropout = 0.01
self.t_gate = tgate
self.m_gate = mgate
self.c_gate = cgate
self.blend = nn.Parameter(torch.tensor(0.5))
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(),
"tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(),
"softplus": nn.Softplus(), "softshrink": nn.Softshrink(),
"leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.attna = MultiheadA(dims, head, rotary_emb=True, debug=debug)
self.attnb = (MultiheadA(dims, head, rotary_emb=True, debug=debug) if cross_attn else None)
mlp = dims * 4
self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
self.t_gate = t_gate(dims=dims, num_types=4) if t_gate else None
self.m_gate = m_gate(dims=dims, mem_size=mem_size) if m_gate else None
self.c_gate = c_gate(dims=dims) if c_gate else None
self.lna = RMSNorm(dims)
self.lnb = RMSNorm(dims) if cross_attn else None
self.lnc = RMSNorm(dims)
if not any([t_gate, m_gate, c_gate]):
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
def forward(self, x: Tensor, xa: Tensor = None, mask: Tensor = None, feat=None, layer = None):
bln = self.blend
x = x + self.attna(self.lna(x), xa=None, mask=mask, layer=layer, feat=feat)[0]
if self.attnb and xa is not None:
c = self.attnb(self.lnb(x), xa, mask=None, layer=layer, feat=feat)[0]
b = torch.sigmoid(bln)
x = b * x + (1 - b) * c
normx = self.lnc(x)
mlp_out = self.mlp(normx)
if self.t_gate:
gate = self.t_gate(normx)
x = x + gate * mlp_out
elif self.m_gate:
gate = self.m_gate(normx)
x = x + gate * mlp_out
elif self.c_gate is not None:
gate_output = self.c_gate(normx, self.features)
x = x + gate_output
else:
if hasattr(self, 'mlp_gate'):
mlp_gate = self.mlp_gate(normx)
x = x + mlp_gate * mlp_out
else:
x = x + mlp_out
if "residual" in self.debug and self._counter % 100 == 0:
print(f"Step {self._counter}: Residual block output shape: {x.shape}, xa shape: {xa.shape if xa is not None else None}")
if self.t_gate:
print(f"Step {self._counter}: Using t_gate: {self.t_gate}")
elif self.m_gate:
print(f"Step {self._counter}: Using m_gate: {self.m_gate}")
elif self.c_gate:
print(f"Step {self._counter}: Using c_gate: {self.c_gate}")
else:
print(f"Step {self._counter}: Using MLP gate: {self.mlp_gate if hasattr(self, 'mlp_gate') else None}")
self._counter += 1
return x
class PEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act):
super().__init__()
self.head_dim = dims // head
self.dropout = 0.01
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.encoder = nn.Sequential(
Conv1d(input_dims, dims//4, kernel_size=7, stride=8, padding=3), act_fn,
Conv1d(dims//4, dims//2, kernel_size=5, stride=4, padding=2), act_fn,
Conv1d(dims//2, dims, kernel_size=5, stride=5, padding=2),act_fn)
def forward(self, x, feat=None, layer=None):
x = self.encoder(x).permute(0, 2, 1)
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = self.norm(x)
return x
class WEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act):
super().__init__()
self.head_dim = dims // head
self.dropout = 0.01
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.downsample = nn.Sequential(
Conv1d(input_dims, dims//8, kernel_size=15, stride=8, padding=7), act_fn,
Conv1d(dims//8, dims//4, kernel_size=7, stride=4, padding=3), act_fn,
Conv1d(dims//4, dims, kernel_size=9, stride=5, padding=4), act_fn)
self.encoder = nn.Sequential(
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims//8), act_fn,
Conv1d(dims, dims, kernel_size=1), act_fn)
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
def forward(self, x, feat=None, layer=None):
x = self.downsample(x)
x = self.encoder(x)
x = x.permute(0, 2, 1)
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
return self.norm(x)
class FEncoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1):
super().__init__()
self.head_dim = dims // head
self.dropout = 0.01
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.encoder = nn.Sequential(
Conv1d(input_dims, dims, kernel_size=kernel_size, stride=stride, padding=kernel_size//2), act_fn,
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims), act_fn)
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
self._norm = RMSNorm(dims)
def forward(self, x, feat=None, layer=None):
x = self.encoder(x).permute(0, 2, 1)
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = self._norm(x)
return x
class F0Encoder(nn.Module):
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1):
super().__init__()
self.head_dim = dims // head
self.dropout = 0.01
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(),
"tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(),
"softplus": nn.Softplus(), "softshrink": nn.Softshrink(),
"leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
self.encoder = nn.Sequential(
Conv1d(input_dims, dims, kernel_size=kernel_size, stride=stride, padding=kernel_size//2), act_fn,
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims), act_fn)
self.positional = lambda length: sinusoids(length, dims)
self.norm = RMSNorm(dims)
self._norm = RMSNorm(dims)
def forward(self, x, feat=None, layer=None):
if x.dim() == 3 and x.shape[0] == 1 and x.shape[1] == 1:
pass
elif x.dim() == 2:
x = x.unsqueeze(1)
elif x.dim() == 1:
x = x.unsqueeze(0).unsqueeze(0)
x = self.encoder(x)
x = x.permute(0, 2, 1)
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = self._norm(x)
return x
class AudioEncoder(nn.Module):
_seen = set()
def __init__(self, mels: int, ctx: int, dims: int, head: int, layer: int, debug: List[str], features: List[str],
f0_rotary: bool = False, act: str = "gelu"):
super(AudioEncoder, self).__init__()
self.dims = dims
self.head = head
self.ctx = ctx
self.head_dim = dims // head
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dtype = torch.float32
self.device = device
self.dtype = dtype
self.debug = debug
self._counter = 0
self.features = features
self.dropout = 0.01
self.f0_rotary = f0_rotary
self.rope = rotary(
dims=self.head_dim)
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(),
"tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
act_fn = act_map.get(act, nn.GELU())
if features == ["spectrogram", "waveform", "pitch"]:
cgate=True
else:
cgate = False
self.blocks = nn.ModuleDict({
"spectrogram": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "spectrogram" in features else None
),
"waveform": nn.ModuleList(
[WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "waveform" in features else None
),
"pitch": nn.ModuleList(
[FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)] if "pitch" in features else None
),
"spec_envelope": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug) for _ in range(layer)] if "spec_envelope" in features else None
),
"spec_phase": nn.ModuleList(
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug) for _ in range(layer)] if "spec_phase" in features else None),
})
self.f0 = nn.ModuleList([
FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)
for _ in range(layer)])
def forward(self, feat, layer="encoder"):
if self._counter < 1:
s = feat.get("spectrogram")
w = feat.get("waveform")
p = default(feat.get("f0"), feat.get("pitch"))
plot_waveform(x=s, w=w, p=p, hop_length=128)
enc = {}
enc.update(feat)
for f in self.features:
if f in feat and f in self.blocks:
x = feat[f]
for block in self.blocks[f]:
x = block(x, feat=feat, layer=layer)
enc[f] = x
if "encoder" in self.debug and self._counter % 100 == 0:
names = list(feat.keys())
shapes = {k: v.shape for k, v in feat.items()}
print(f"Step {self._counter}: mode: {names}")
print(f"shapes: {shapes}")
for name, param in self.named_parameters():
if param.requires_grad:
print(f"ENCODER LAYER {name}: grad_norm={param.median():.4f}")
self._counter += 1
return enc
class TextDecoder(nn.Module):
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer: int, cross_attn: bool,
debug: List[str], features: List[str], f0_rotary: bool = False, sequential=False):
super(TextDecoder, self).__init__()
self.dims = dims
self.head = head
self.ctx = ctx
self.head_dim = dims // head
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dtype = torch.float32
self.device = device
self.dtype = dtype
self.debug = debug
self._counter = 0
self.dropout = 0.01
self.sequential = sequential
self.features = features
self.f0_rotary = f0_rotary
self.token = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)
with torch.no_grad():
self.token.weight[0].zero_()
self.positional = nn.Parameter(data=torch.empty(ctx, dims), requires_grad=True)
self.block = nn.ModuleList([
Residual(ctx=ctx, dims=dims, head=head, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
for _ in range(layer)])
self.blocks = nn.ModuleDict({
f: nn.ModuleList([Residual(ctx=ctx, dims=dims, head=head, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
for _ in range(layer)]) for f in features})
self.blend = nn.ParameterDict({f: nn.Parameter(torch.tensor(0.5)) for f in features})
self.ln_dec = RMSNorm(dims)
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
self.register_buffer("mask", mask, persistent=False)
rotary_emb = False
if rotary_emb:
self.rope = rotary(
dims=self.head_dim,
debug = debug,
radii=False,
learned_pitch=False,
learned_freq=False,
learned_theta=False,
learned_radius=False,
)
else:
self.rope = None
def forward(self, x, feat, order=None, layer='decoder') -> Tensor:
bln = self.blend
x = x.to(device)
if order is None:
order = self.features
mask = self.mask[:x.shape[1], :x.shape[1]]
x = self.token(x) + self.positional[:x.shape[1]]
x = F.dropout(x, p=self.dropout, training=self.training)
for block in self.block:
x = block(x, xa=None, mask=mask, feat=feat, layer=layer)
for f in order:
if f in feat:
xa = feat[f]
for block in self.blocks[f]:
out = block(x=x, xa=xa, mask=None, feat=feat, layer=layer)
a = torch.sigmoid(bln[f])
x = a * out + (1 - a) * x
x = self.ln_dec(x)
if "decoder" in self.debug and self._counter % 100 == 0:
for name, param in self.named_parameters():
if param.requires_grad:
print(f"DECODER LAYER {name}: grad_norm={param.median():.4f}")
self._counter += 1
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
class Echo(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.count = 0
self.encoder = AudioEncoder(
mels=param.mels,
ctx=param.aud_ctx,
dims=param.aud_dims,
head=param.aud_head,
layer=param.aud_idx,
act=param.act,
debug=param.debug,
features=param.features,
f0_rotary=param.f0_rotary,
)
self.decoder = TextDecoder(
vocab=param.vocab,
ctx=param.text_ctx,
dims=param.text_dims,
head=param.text_head,
layer=param.text_idx,
cross_attn=param.cross_attn,
debug=param.debug,
features=param.features,
f0_rotary=param.f0_rotary,
)
all_head = torch.zeros(self.param.text_idx, self.param.text_head, dtype=torch.bool)
all_head[self.param.text_idx // 2 :] = True
self.register_buffer("alignment_head", all_head.to_sparse(), persistent=False)
def set_alignment_head(self, dump: bytes):
array = np.frombuffer(
gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()
mask = torch.from_numpy(array).reshape(
self.param.text_idx, self.param.text_head)
self.register_buffer("alignment_head", mask.to_sparse(), persistent=False)
def embed_audio(self, spectrogram: torch.Tensor):
return self.encoder(spectrogram)
def logits(self,input_ids: torch.Tensor, encoder_output: torch.Tensor):
return self.decoder(input_ids, encoder_output)
def forward(self,
decoder_input_ids=None,
labels=None,
waveform: Optional[torch.Tensor]=None,
input_ids=None,
spectrogram: torch.Tensor=None,
pitch: Optional[torch.Tensor]=None,
f0: Optional[torch.Tensor]=None,
f0d: Optional[torch.Tensor]=None,
envelope: Optional[torch.Tensor]=None,
phase: Optional[torch.Tensor]=None,
) -> Dict[str, torch.Tensor]:
decoder_input_ids = input_ids
encoder_inputs = {}
if spectrogram is not None:
encoder_inputs["spectrogram"] = spectrogram
if waveform is not None:
encoder_inputs["waveform"] = waveform
if pitch is not None:
encoder_inputs["pitch"] = pitch
if envelope is not None:
encoder_inputs["envelope"] = envelope
if phase is not None:
encoder_inputs["phase"] = phase
if f0 is not None:
encoder_inputs["f0"] = f0
if f0d is not None:
encoder_inputs["f0d"] = f0d
encoder_outputs = self.encoder(encoder_inputs)
logits = self.decoder(input_ids, encoder_outputs)
loss = None
if labels is not None:
loss = F.cross_entropy(
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
self.count += 1
return {
"logits": logits,
"loss": loss,
"labels": labels,
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"encoder_output": encoder_outputs,
}
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def _init_weights(self, module):
std = 0.02
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "SEBlock": 0, "TextDecoder": 0, "AudioEncoder": 0,
"Residual": 0, "MultiheadA": 0, "MultiheadB - Cross Attention": 0,
"MultiheadC": 0, "MultiheadD": 0, "FEncoder": 0,
"WEncoder": 0, "PEncoder": 0}
for name, module in self.named_modules():
if isinstance(module, RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, MultiheadA):
self.init_counts["MultiheadA"] += 1
elif isinstance(module, TextDecoder):
self.init_counts["TextDecoder"] += 1
elif isinstance(module, AudioEncoder):
self.init_counts["AudioEncoder"] += 1
elif isinstance(module, Residual):
self.init_counts["Residual"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
def register_gradient_hooks(self):
for name, param in self.named_parameters():
if param.requires_grad:
if "encoder" in name:
param.register_hook(lambda grad, n=name: self._print_encoder_grad(n, grad))
elif "decoder" in name:
param.register_hook(lambda grad, n=name: self._print_decoder_grad(n, grad))
print("Gradient debugging hooks registered")
return self
def _print_encoder_grad(self, name, grad):
if grad is not None and self.count == 10:
norm = grad.median().item()
print(f"ENCODER GRAD: {name} = {norm:.6f}")
return None
def _print_decoder_grad(self, name, grad):
if grad is not None and self.count == 10:
norm = grad.median().item()
print(f"DECODER GRAD: {name} = {norm:.6f}")
return None
def reset_counter(self):
self._counter = 0
print("Counter reset to 0.")