asr-model / model_simple.py
Sin2pi's picture
Update model_simple.py
9e76dcc verified
raw
history blame
17.5 kB
import os
import warnings
import logging
from itertools import chain
import torch
from torch import nn, Tensor
from typing import Optional, Dict
import numpy as np
from datetime import datetime
from dataclasses import dataclass
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
from torch.nn.functional import scaled_dot_product_attention
from echoutils import *
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
@dataclass
class Dimensions:
vocab: int
mels: int
ctx: int
dims: int
head: int
layer: int
act: str
class rotary(nn.Module):
def __init__(self, dims, head):
super(rotary, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.theta = nn.Parameter((torch.tensor(10000, device=device, dtype=dtype)), requires_grad=True)
self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)
def _compute_freqs_base(self):
mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
return 200 * mel_scale / 1000
def forward(self, x, ctx) -> Tensor:
freqs = (self.theta / 220.0) * self.freqs_base
pos = torch.arange(ctx, device=device, dtype=dtype)
freqs = pos[:, None] * freqs
freqs=torch.polar(torch.ones_like(freqs), freqs)
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
orig_shape = x1.shape
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1) * freqs
x1 = torch.view_as_real(x1).flatten(-2)
x1 = x1.view(orig_shape)
return torch.cat([x1.type_as(x), x2], dim=-1)
def qkvinit(dims: int, head: int):
head_dim = dims // head
scale = head_dim ** -0.5
q = nn.Linear(dims, dims)
k = nn.Linear(dims, dims, bias=False)
v = nn.Linear(dims, dims)
o = nn.Linear(dims, dims)
return q, k, v, o, scale
def create_qkv(dims, head, q, k, v, x, xa):
head_dim = dims // head
scale = head_dim ** -0.25
q = q(x) * scale
k = k(xa) * scale
v = v(xa)
batch, ctx, dims = x.shape
def _shape(tensor):
return tensor.view(batch, ctx, head, head_dim).transpose(1, 2).contiguous()
return _shape(q), _shape(k), _shape(v)
def calculate_attention(q, k, v, mask=None, temperature=1.0, is_causal=True):
scaled_q = q
if temperature != 1.0 and temperature > 0:
scaled_q = q * (1.0 / temperature)**.5
out = scaled_dot_product_attention(scaled_q, k, v, is_causal=mask is not None and q.shape[1] > 1)
# out = scaled_dot_product_attention(scaled_q, k, v, attn_mask=attn_mask, is_causal=is_causal if attn_mask is None else False)
return out
class LocalAttentionModule(nn.Module):
def __init__(self, head_dim: int):
super().__init__()
self.head_dim = head_dim
self.query_module = nn.Linear(head_dim, head_dim)
self.key_module = nn.Linear(head_dim, head_dim)
self.value_module = nn.Linear(head_dim, head_dim)
self.out_proj = nn.Linear(head_dim, head_dim)
def _reshape_to_output(self, x):
return x
class attentiona(nn.Module):
def __init__(self, dims: int, head: int, max_iterations: int = 3, threshold: float = 0.01, factor: float = 0.1, dropout: float = 0.1):
super(attentiona, self).__init__()
# self.q, self.k, self.v, self.o, self.lna, self.lnb = qkv_init(dims, head)
self.dims = dims
self.head = head
self.head_dim = dims // head
self.max_iterations = max_iterations
self.threshold = nn.Parameter(torch.tensor(threshold))
self.factor = nn.Parameter(torch.tensor(factor))
self.dropout = dropout
self.q = nn.Linear(dims, dims)
self.k = nn.Linear(dims, dims, bias=False)
self.v = nn.Linear(dims, dims)
self.o = nn.Linear(dims, dims)
self.lna = nn.LayerNorm(dims, bias=False)
self.lnb = nn.LayerNorm(dims, bias=False)
self.lnc = nn.LayerNorm(self.head_dim, bias=False)
self.lnd = nn.LayerNorm(self.head_dim, bias=False)
self.attn_local = LocalAttentionModule(self.head_dim)
def _focus(self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None):
q = self.q(self.lna(x))
k = self.k(self.lnb(x if xa is None else xa))
v = self.v(self.lnb(x if xa is None else xa))
query = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
key = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
value = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
iteration = 0
prev_out = torch.zeros_like(query)
attn_out = torch.zeros_like(query)
threshold = self.threshold.item()
factor = self.factor.item()
qcur = query
while iteration < self.max_iterations:
eff_span = min(x.shape[1], qcur.size(1), key.size(1))
if xa is not None:
eff_span = min(eff_span, xa.shape[1])
if eff_span == 0:
break
qiter = qcur[:, :, :eff_span, :]
kiter = key[:, :, :eff_span, :]
viter = value[:, :, :eff_span, :]
q = self.attn_local.query_module(qiter)
k = self.attn_local.key_module(kiter)
v = self.attn_local.value_module(viter)
iter_mask = None
if mask is not None:
if mask.dim() == 4:
iter_mask = mask[:, :, :eff_span, :eff_span]
elif mask.dim() == 2:
iter_mask = mask[:eff_span, :eff_span]
attn_iter = calculate_attention(
self.lnc(q), self.lnd(k), v,
mask=iter_mask,
is_causal=True)
iter_out = torch.zeros_like(qcur)
iter_out[:, :, :eff_span, :] = attn_iter
diff = torch.abs(iter_out - prev_out).mean()
dthresh = threshold + factor * diff
if diff < dthresh and iteration > 0:
attn_out = iter_out
break
prev_out = iter_out.clone()
qcur = qcur + iter_out
attn_out = iter_out
iteration += 1
output = attn_out.permute(0, 2, 1, 3).flatten(start_dim=2)
return self.o(output), None
def _slide_win_local(self, x: Tensor, win_size: int, span_len: int, mask: Optional[Tensor] = None, is_causal: bool = False) -> Tensor:
batch, ctx, dims = x.size()
output = torch.zeros_like(x)
num_win = (ctx + win_size - 1) // win_size
for i in range(num_win):
qstart = i * win_size
qend = min(qstart + win_size, ctx)
current_win_qlen = qend - qstart
if current_win_qlen == 0:
continue
kvstart = max(0, qend - span_len)
kvend = qend
qwin = x[:, qstart:qend, :]
kwin = x[:, kvstart:kvend, :]
win_mask = None
if mask is not None:
if mask.dim() == 4:
win_mask = mask[:, :, qstart:qend, kvstart:kvend]
elif mask.dim() == 2:
win_mask = mask[qstart:qend, kvstart:kvend]
attn_out, _ = self._focus(
x=qwin,
xa=kwin,
mask=win_mask)
output[:, qstart:qend, :] = attn_out
return output
def forward(self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None,
use_sliding_win: bool = False, win_size: int = 512, span_len: int = 1024) -> Tensor:
if use_sliding_win:
return self._slide_win_local(x, win_size, span_len, mask)
else:
output, _ = self._focus(x, xa, mask)
return output
class attentionb(nn.Module):
def __init__(self, dims: int, head: int):
super(attentionb, self).__init__()
self.q, self.k, self.v, self.o, self.lna, self.lnb = qkv_init(dims, head)
self.dims = dims
self.head = head
self.head_dim = dims // head
self.rope = rotary(dims=dims, head=head)
def forward(self, x: Tensor, xa = None, mask = None):
z = default(xa, x)
q, k, v = create_qkv(self.dims, self.head, self.q, self.k, self.v, self.lna(x), self.lna(z))
q = self.rope(q, q.shape[2])
k = self.rope(k, k.shape[2])
a = scaled_dot_product_attention(self.lnb(q), self.lnb(k), v, is_causal=mask is not None and q.shape[1] > 1)
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
return self.o(out)
class Residual(nn.Module):
def __init__(self, dims: int, head: int, act: str = "silu"):
super().__init__()
self.lna = nn.LayerNorm(dims, bias=False)
self.attnb = attentionb(dims, head)
self.attna = attentiona(dims, head, max_iterations=3)
self.mlp = nn.Sequential(Linear(dims, dims*4), get_activation(act), Linear(dims*4, dims))
def forward(self, x, xa = None, mask = None) -> Tensor:
x = x + self.attnb(self.lna(x), xa=None, mask=mask)
if xa is not None:
x = x + self.attna(self.lna(x), xa, mask=None, use_sliding_win=True, win_size=500, span_len=1500)
x = x + self.mlp(self.lna(x))
return x
class processor(nn.Module):
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int, act: str = "gelu"):
super(processor, self).__init__()
self.ln = nn.LayerNorm(dims)
self.blend = nn.Parameter(torch.tensor(0.5), requires_grad=True)
self.token_emb = nn.Embedding(vocab, dims)
self.positions = nn.Parameter(torch.empty(ctx, dims), requires_grad=True)
self.audio_emb = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
act_fn = get_activation(act)
self.audio_enc = nn.Sequential(
Conv1d(1, dims, kernel_size=3, stride=1, padding=1), act_fn,
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
self.bA = nn.ModuleList([Residual(dims, head, act_fn) for _ in range(layer)])
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, xa, sequential=False) -> Tensor:
x = self.token_emb(x.long()) + self.positions[:x.shape[1]]
xa = self.audio_enc(xa).permute(0, 2, 1)
xa = xa + self.audio_emb(xa.shape[1], xa.shape[-1], 36000.0).to(device, dtype)
for b in chain(self.bA or []):
xa = b(x=xa, xa=None, mask=None)
x = b(x=x, xa=None, mask=self.mask)
x = b(x=x, xa=xa, mask=None)
# xc = b(torch.cat([x, xa], dim=1), xa=None, mask=self.mask)
# x = b(x=xc[:, :x.shape[1]], xa=xc[:, x.shape[1]:], mask=None)
# if sequential:
# x = y
# else:
# a = torch.sigmoid(self.blend)
# x = a * y + (1 - a) * x
x = nn.functional.dropout(x, p=0.001, training=self.training)
x = self.ln(x)
x = x @ torch.transpose(self.token_emb.weight.to(dtype), 0, 1).float()
return x
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
class Model(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.processor = processor(
vocab=param.vocab,
mels=param.mels,
ctx=param.ctx,
dims=param.dims,
head=param.head,
layer=param.layer,
act=param.act)
def forward(self,
labels=None, input_ids=None, pitch: Optional[torch.Tensor]=None) -> Dict[str, Optional[torch.Tensor]]:
x = input_ids
xa = pitch if pitch is not None else torch.zeros(1, 1, self.param.mels, device=device, dtype=dtype)
logits = self.processor(x, xa)
loss = None
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
return {"logits": logits, "loss": loss}
def _init_weights(self, module):
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "processor": 0, "attention": 0, "Residual": 0}
for name, module in self.named_modules():
if isinstance(module, RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, Residual):
self.init_counts["Residual"] += 1
elif isinstance(module, processor):
self.init_counts["processor"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
def main():
token = ""
log_dir = os.path.join('D:/newmodel/output/logs/', datetime.now().strftime('%m-%d_%H_%M_%S'))
os.makedirs(log_dir, exist_ok=True)
tokenizer = setup_tokenizer("D:/newmodel/mod5/tokenizer.json")
extract_args = {
"waveform": False,
"spec": False,
"f0": False,
"f0t": False,
"pitch": True,
"harmonics": False,
"aperiodics": False,
"phase_mod": False,
"crepe": False,
"sample_rate": 16000,
"hop_length": 256,
"mode": "mean",
"debug": False,
}
param = Dimensions(
vocab=40000,
mels=128,
ctx=2048,
dims=512,
head=4,
layer=4,
act="swish",
)
train_dataset, test_dataset = prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, streaming=False,
load_saved=False, save_dataset=False, cache_dir=None, extract_args=extract_args, max_ctx=param.ctx)
model = Model(param).to('cuda')
print(f"Trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}")
from functools import partial
metrics_fn = partial(compute_metrics, print_pred=True, num_samples=1, tokenizer=tokenizer, model=model)
training_args = Seq2SeqTrainingArguments(
output_dir=log_dir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
max_steps=1000,
eval_steps=100,
save_steps=1000,
warmup_steps=100,
logging_steps=10,
logging_dir=log_dir,
logging_strategy="steps",
eval_strategy="steps",
save_strategy="no",
report_to=["tensorboard"],
push_to_hub=False,
save_total_limit=1,
label_names=["labels"],
save_safetensors=False,
eval_on_start=False,
batch_eval_metrics=False,
disable_tqdm=False,
include_tokens_per_second=True,
include_num_input_tokens_seen=True,
learning_rate=0.00025,
weight_decay=0.025,
)
optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, eps=1e-8, weight_decay=training_args.weight_decay, betas=(0.9, 0.999),
amsgrad=False, foreach=False, fused=False, capturable=False, differentiable=False, maximize=False)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=training_args.max_steps, eta_min=1e-9, last_epoch=-1)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=DataCollator(tokenizer=tokenizer),
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
compute_metrics=metrics_fn,
optimizers=(optimizer, scheduler)
)
model.init_weights()
trainer.train()
if __name__ == "__main__":
main()