Update model.py
Browse files
model.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
|
2 |
import pyworld as pw
|
3 |
import os
|
|
|
4 |
import math, random
|
5 |
import warnings
|
6 |
import logging
|
@@ -10,22 +11,32 @@ import torch
|
|
10 |
import torchaudio
|
11 |
import torch.nn.functional as F
|
12 |
import torch.nn.init as init
|
13 |
-
from torch import nn, Tensor
|
14 |
import numpy as np
|
|
|
|
|
15 |
from typing import Optional, Dict, Union, List, Tuple, Any
|
16 |
from functools import partial
|
17 |
from datetime import datetime
|
18 |
-
from datasets import load_dataset, Audio
|
19 |
from transformers.trainer_seq2seq import Seq2SeqTrainer
|
20 |
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
21 |
import transformers
|
22 |
import evaluate
|
23 |
from dataclasses import dataclass
|
24 |
-
import
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
dtype = torch.float32
|
28 |
|
|
|
|
|
|
|
29 |
extractor = None
|
30 |
tokenizer = None
|
31 |
optimizer = None
|
@@ -171,6 +182,11 @@ def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_
|
|
171 |
plt.show()
|
172 |
return fig
|
173 |
|
|
|
|
|
|
|
|
|
|
|
174 |
def exists(v):
|
175 |
return v is not None
|
176 |
|
@@ -226,7 +242,7 @@ def get_device():
|
|
226 |
def get_dtype():
|
227 |
return torch.float32 if torch.cuda.is_available() else torch.float64
|
228 |
|
229 |
-
def
|
230 |
return {"device": get_device(), "dtype": get_dtype()}
|
231 |
|
232 |
def sinusoids(length, channels, max_timescale=10000):
|
@@ -237,55 +253,93 @@ def sinusoids(length, channels, max_timescale=10000):
|
|
237 |
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
238 |
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
if
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
wav_np = waveform.detach().cpu().numpy().astype(np.float64)
|
272 |
else:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
281 |
|
282 |
class rotary(nn.Module):
|
283 |
_seen = set()
|
284 |
def __init__(self, dims, max_ctx=1500, theta=10000, learned_freq=False, radii=False,
|
285 |
-
learned_radius=False, learned_theta=False, learned_pitch=False, debug: List[str] = [],
|
|
|
286 |
super().__init__()
|
287 |
|
288 |
-
self.use_pbias =
|
|
|
|
|
|
|
289 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
290 |
self.dtype = torch.float32
|
291 |
self.debug = debug
|
@@ -305,117 +359,146 @@ class rotary(nn.Module):
|
|
305 |
|
306 |
self.theta = nn.Parameter(torch.tensor(theta, device=self.device, dtype=self.dtype), requires_grad=True)
|
307 |
self.pitch_scale = nn.Parameter(torch.tensor(pitch_scale, device=self.device, dtype=self.dtype), requires_grad=True)
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
self.radius = nn.Parameter(torch.ones(radius, device=self.device, dtype=self.dtype), requires_grad=True)
|
311 |
|
312 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
315 |
if isinstance(x, int):
|
316 |
ctx = x
|
317 |
-
|
318 |
batch, ctx, dims = x.shape
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
if f0 is not None:
|
322 |
-
f0_mean=f0.mean()+1e-8
|
323 |
-
theta=f0_mean*self.pitch_scale
|
324 |
-
freqs = 1. / (theta ** (torch.arange(0, self.dims, 2, device=self.device, dtype=self.dtype)[:(self.dims // 2)].float() /self.dims))
|
325 |
-
|
|
|
|
|
326 |
freqs = self.freqs
|
327 |
|
328 |
-
freqs =
|
329 |
-
|
330 |
-
# print(f"{layer} : {f0_mean} : {theta:.2f} : {ctx} ")
|
331 |
if self.radii:
|
332 |
-
# radius = self.align_f0(f0, ctx)
|
333 |
-
radius = enc.get("f0d") if enc else self.radius
|
334 |
-
radius = radius.float()
|
335 |
-
|
336 |
-
else:
|
337 |
-
radius = self.radius
|
338 |
-
# freqs = torch.polar(self.radius.unsqueeze(-1), freqs)
|
339 |
-
freqs = torch.polar(radius.unsqueeze(-1), freqs)
|
340 |
-
|
341 |
-
if "rotary" in self.debug:
|
342 |
if f0 is not None:
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
self._counter += 1
|
356 |
-
return freqs
|
357 |
|
358 |
@staticmethod
|
359 |
def apply_rotary(x, freqs):
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
x1 = x1.
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
x1 = x[..., :freqs.shape[-1]*2]
|
371 |
-
x2 = x[..., freqs.shape[-1]*2:]
|
372 |
-
|
373 |
-
if x.ndim == 2:
|
374 |
-
x1 = x1.unsqueeze(0)
|
375 |
-
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
376 |
-
x1 = torch.view_as_complex(x1)
|
377 |
-
x1 = x1 * freqs
|
378 |
-
x1 = torch.view_as_real(x1).flatten(-2)
|
379 |
-
x1 = x1.squeeze(0)
|
380 |
-
return torch.cat([x1.type_as(x), x2], dim=-1)
|
381 |
-
else:
|
382 |
-
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
383 |
-
x1 = torch.view_as_complex(x1)
|
384 |
-
x1 = x1 * freqs
|
385 |
-
x1 = torch.view_as_real(x1).flatten(-2)
|
386 |
-
return torch.cat([x1.type_as(x), x2], dim=-1)
|
387 |
|
388 |
class MultiheadA(nn.Module):
|
389 |
_seen = set()
|
390 |
rbf = False
|
391 |
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
|
392 |
-
zero_val: float =
|
393 |
-
|
394 |
super(MultiheadA, self).__init__()
|
395 |
|
396 |
self.dims = dims
|
397 |
self.head = head
|
398 |
self.head_dim = dims // head
|
399 |
-
|
400 |
-
self.q = Linear(dims, dims)
|
401 |
-
self.k = Linear(dims, dims, bias=False)
|
402 |
-
self.v = Linear(dims, dims)
|
403 |
-
self.o = Linear(dims, dims)
|
404 |
-
|
405 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
406 |
-
self.dtype = torch.float32
|
407 |
self.debug = debug
|
408 |
self._counter = 0
|
409 |
|
|
|
|
|
|
|
|
|
|
|
410 |
self.pad_token = 0
|
411 |
self.rotary_emb = rotary_emb
|
412 |
self.minz = minz
|
413 |
self.maxz = maxz
|
414 |
self.zero_val = zero_val
|
415 |
self.optim_attn = optim_attn
|
416 |
-
self.fzero = nn.Parameter(torch.tensor(zero_val, dtype=
|
417 |
|
418 |
if rotary_emb:
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
self.rope = rotary(
|
420 |
dims=self.head_dim,
|
421 |
debug = debug,
|
@@ -426,8 +509,9 @@ class MultiheadA(nn.Module):
|
|
426 |
learned_radius=False,
|
427 |
)
|
428 |
else:
|
429 |
-
self.
|
430 |
-
|
|
|
431 |
def enhanced_attention_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
432 |
scale = (self.dims // self.head) ** -0.25
|
433 |
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
@@ -440,45 +524,52 @@ class MultiheadA(nn.Module):
|
|
440 |
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
|
441 |
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
|
442 |
|
443 |
-
def forward(self, x: Tensor, xa: Tensor = None,
|
444 |
-
|
|
|
|
|
|
|
|
|
445 |
scale = (self.dims // self.head) ** -0.25
|
446 |
|
447 |
-
z = xa
|
448 |
-
q = self.q(x)
|
449 |
-
k = self.k(z)
|
450 |
-
v = self.v(z)
|
451 |
-
|
|
|
452 |
|
453 |
if self.rotary_emb:
|
454 |
-
qf = self.rope(q.size(1), layer=layer, feat=feat)
|
455 |
-
kf = self.rope(k.size(1), layer=layer, feat=feat)
|
456 |
-
|
457 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
458 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
459 |
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
464 |
else:
|
465 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
466 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
467 |
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
468 |
batch, head, ctx, head_dim = q.shape
|
469 |
-
|
470 |
if self.rbf:
|
471 |
qk = self.enhanced_attention_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
|
472 |
|
473 |
qk = (q * scale) @ (k * scale).transpose(-1, -2)
|
474 |
-
if self.rope.use_pbias:
|
475 |
-
pbias = self.rope.
|
476 |
if pbias is not None:
|
477 |
qk = qk + pbias[:,:,:q.shape[2],:q.shape[2]]
|
478 |
token_ids = k[:, :, :, 0]
|
479 |
zscale = torch.ones_like(token_ids)
|
480 |
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
481 |
-
zscale[token_ids.float() == self.pad_token] = fzero
|
482 |
|
483 |
if mask is not None:
|
484 |
mask = mask[:q.shape[2], :q.shape[2]]
|
@@ -488,9 +579,7 @@ class MultiheadA(nn.Module):
|
|
488 |
wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
|
489 |
|
490 |
if "multihead" in self.debug and self._counter % 100 == 0:
|
491 |
-
print(f"
|
492 |
-
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape}")
|
493 |
-
print(f"Attention shape: {qk.shape}, wv shape: {wv.shape}")
|
494 |
self._counter += 1
|
495 |
return self.o(wv), qk.detach()
|
496 |
|
@@ -539,7 +628,6 @@ class c_gate(nn.Module):
|
|
539 |
s = self.s_gate(x) * s_feat
|
540 |
w = self.w_gate(x) * w_feat
|
541 |
p = self.p_gate(x) * p_feat
|
542 |
-
|
543 |
comb = torch.cat([s, w, p], dim=-1)
|
544 |
return self.integ(comb)
|
545 |
|
@@ -549,8 +637,6 @@ class Residual(nn.Module):
|
|
549 |
tgate=True, mgate=False, cgate=False, mem_size=512, features=None):
|
550 |
super().__init__()
|
551 |
|
552 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
553 |
-
self.dtype = torch.float32
|
554 |
self.dims = dims
|
555 |
self.head = head
|
556 |
self.ctx = ctx
|
@@ -590,12 +676,16 @@ class Residual(nn.Module):
|
|
590 |
if not any([t_gate, m_gate, c_gate]):
|
591 |
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
592 |
|
593 |
-
def forward(self, x
|
|
|
|
|
|
|
|
|
594 |
bln = self.blend
|
595 |
-
x = x + self.attna(self.lna(x), xa=None, mask=mask, layer=layer,
|
596 |
|
597 |
if self.attnb and xa is not None:
|
598 |
-
c = self.attnb(self.lnb(x), xa, mask=None, layer=layer,
|
599 |
b = torch.sigmoid(bln)
|
600 |
x = b * x + (1 - b) * c
|
601 |
|
@@ -610,7 +700,7 @@ class Residual(nn.Module):
|
|
610 |
gate = self.m_gate(normx)
|
611 |
x = x + gate * mlp_out
|
612 |
|
613 |
-
elif self.c_gate is not None:
|
614 |
gate_output = self.c_gate(normx, self.features)
|
615 |
x = x + gate_output
|
616 |
|
@@ -635,34 +725,74 @@ class Residual(nn.Module):
|
|
635 |
|
636 |
return x
|
637 |
|
638 |
-
class
|
639 |
-
def __init__(self, input_dims, dims, head, layer, kernel_size, act):
|
640 |
super().__init__()
|
641 |
|
642 |
-
self.
|
643 |
-
self.
|
|
|
|
|
|
|
644 |
|
645 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
646 |
act_fn = act_map.get(act, nn.GELU())
|
647 |
|
648 |
self.encoder = nn.Sequential(
|
649 |
-
Conv1d(input_dims, dims
|
650 |
-
Conv1d(dims
|
651 |
-
Conv1d(dims
|
652 |
|
653 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
x = self.encoder(x).permute(0, 2, 1)
|
655 |
-
|
|
|
|
|
|
|
656 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
657 |
-
x = self.
|
658 |
return x
|
659 |
-
|
660 |
class WEncoder(nn.Module):
|
661 |
-
def __init__(self, input_dims, dims, head, layer, kernel_size, act):
|
662 |
super().__init__()
|
663 |
|
|
|
664 |
self.head_dim = dims // head
|
665 |
self.dropout = 0.01
|
|
|
|
|
666 |
|
667 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
668 |
act_fn = act_map.get(act, nn.GELU())
|
@@ -675,78 +805,83 @@ class WEncoder(nn.Module):
|
|
675 |
self.encoder = nn.Sequential(
|
676 |
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims//8), act_fn,
|
677 |
Conv1d(dims, dims, kernel_size=1), act_fn)
|
678 |
-
|
679 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
680 |
self.norm = RMSNorm(dims)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
|
682 |
-
def forward(self, x,
|
683 |
x = self.downsample(x)
|
684 |
x = self.encoder(x)
|
685 |
x = x.permute(0, 2, 1)
|
686 |
-
|
|
|
|
|
|
|
687 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
688 |
return self.norm(x)
|
689 |
|
690 |
-
class
|
691 |
-
def __init__(self, input_dims, dims, head, layer, kernel_size, act,
|
692 |
super().__init__()
|
693 |
|
694 |
-
self.
|
695 |
-
self.
|
|
|
|
|
|
|
696 |
|
697 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
698 |
act_fn = act_map.get(act, nn.GELU())
|
699 |
|
700 |
self.encoder = nn.Sequential(
|
701 |
-
Conv1d(input_dims, dims, kernel_size=
|
702 |
-
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
|
703 |
-
Conv1d(dims, dims, kernel_size=
|
704 |
|
705 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
self.norm = RMSNorm(dims)
|
707 |
-
self._norm = RMSNorm(dims)
|
708 |
|
709 |
-
def
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
x = self.
|
|
|
|
|
|
|
714 |
return x
|
715 |
-
|
716 |
-
class F0Encoder(nn.Module):
|
717 |
-
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1):
|
718 |
-
super().__init__()
|
719 |
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
"leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
727 |
-
act_fn = act_map.get(act, nn.GELU())
|
728 |
-
|
729 |
-
self.encoder = nn.Sequential(
|
730 |
-
Conv1d(input_dims, dims, kernel_size=kernel_size, stride=stride, padding=kernel_size//2), act_fn,
|
731 |
-
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
|
732 |
-
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims), act_fn)
|
733 |
-
|
734 |
-
self.positional = lambda length: sinusoids(length, dims)
|
735 |
-
self.norm = RMSNorm(dims)
|
736 |
-
self._norm = RMSNorm(dims)
|
737 |
-
|
738 |
-
def forward(self, x, feat=None, layer=None):
|
739 |
-
if x.dim() == 3 and x.shape[0] == 1 and x.shape[1] == 1:
|
740 |
-
pass
|
741 |
-
elif x.dim() == 2:
|
742 |
-
x = x.unsqueeze(1)
|
743 |
-
elif x.dim() == 1:
|
744 |
-
x = x.unsqueeze(0).unsqueeze(0)
|
745 |
-
x = self.encoder(x)
|
746 |
-
x = x.permute(0, 2, 1)
|
747 |
-
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
|
748 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
749 |
-
x = self.
|
750 |
return x
|
751 |
|
752 |
class AudioEncoder(nn.Module):
|
@@ -759,20 +894,15 @@ class AudioEncoder(nn.Module):
|
|
759 |
self.head = head
|
760 |
self.ctx = ctx
|
761 |
self.head_dim = dims // head
|
762 |
-
|
763 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
764 |
-
dtype = torch.float32
|
765 |
-
self.device = device
|
766 |
-
self.dtype = dtype
|
767 |
self.debug = debug
|
768 |
self._counter = 0
|
769 |
|
770 |
self.features = features
|
771 |
self.dropout = 0.01
|
772 |
-
self.f0_rotary = f0_rotary
|
773 |
|
774 |
self.rope = rotary(
|
775 |
-
dims=self.head_dim
|
|
|
776 |
|
777 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(),
|
778 |
"tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
@@ -809,34 +939,44 @@ class AudioEncoder(nn.Module):
|
|
809 |
FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)
|
810 |
for _ in range(layer)])
|
811 |
|
812 |
-
|
813 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
814 |
if self._counter < 1:
|
815 |
-
s =
|
816 |
-
w =
|
817 |
-
p = default(
|
818 |
plot_waveform(x=s, w=w, p=p, hop_length=128)
|
819 |
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
for f in self.features:
|
824 |
-
if f in
|
825 |
-
x =
|
826 |
for block in self.blocks[f]:
|
827 |
-
x = block(x,
|
828 |
-
|
829 |
-
|
830 |
if "encoder" in self.debug and self._counter % 100 == 0:
|
831 |
-
names = list(
|
832 |
-
shapes = {k: v.shape for k, v in
|
833 |
-
print(f"Step {self._counter}: mode: {names}")
|
834 |
-
print(f"shapes: {shapes}")
|
835 |
-
for name, param in self.named_parameters():
|
836 |
-
if param.requires_grad:
|
837 |
-
print(f"ENCODER LAYER {name}: grad_norm={param.median():.4f}")
|
838 |
self._counter += 1
|
839 |
-
return
|
840 |
|
841 |
class TextDecoder(nn.Module):
|
842 |
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer: int, cross_attn: bool,
|
@@ -848,10 +988,8 @@ class TextDecoder(nn.Module):
|
|
848 |
self.ctx = ctx
|
849 |
self.head_dim = dims // head
|
850 |
|
851 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
852 |
-
dtype = torch.float32
|
853 |
-
self.device = device
|
854 |
-
self.dtype = dtype
|
855 |
self.debug = debug
|
856 |
self._counter = 0
|
857 |
|
@@ -878,48 +1016,36 @@ class TextDecoder(nn.Module):
|
|
878 |
|
879 |
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
|
880 |
self.register_buffer("mask", mask, persistent=False)
|
881 |
-
|
882 |
-
rotary_emb = False
|
883 |
-
if rotary_emb:
|
884 |
-
self.rope = rotary(
|
885 |
-
dims=self.head_dim,
|
886 |
-
debug = debug,
|
887 |
-
radii=False,
|
888 |
-
learned_pitch=False,
|
889 |
-
learned_freq=False,
|
890 |
-
learned_theta=False,
|
891 |
-
learned_radius=False,
|
892 |
-
)
|
893 |
-
else:
|
894 |
-
self.rope = None
|
895 |
|
896 |
-
def forward(self, x,
|
897 |
-
|
898 |
-
bln = self.blend
|
899 |
x = x.to(device)
|
|
|
|
|
900 |
if order is None:
|
901 |
order = self.features
|
|
|
902 |
mask = self.mask[:x.shape[1], :x.shape[1]]
|
903 |
x = self.token(x) + self.positional[:x.shape[1]]
|
904 |
x = F.dropout(x, p=self.dropout, training=self.training)
|
905 |
-
|
906 |
for block in self.block:
|
907 |
-
x = block(x, xa=None,
|
908 |
|
909 |
for f in order:
|
910 |
-
if f in
|
911 |
-
xa =
|
912 |
for block in self.blocks[f]:
|
913 |
-
out = block(x=x, xa=xa,
|
|
|
914 |
a = torch.sigmoid(bln[f])
|
915 |
x = a * out + (1 - a) * x
|
916 |
-
|
917 |
-
|
918 |
if "decoder" in self.debug and self._counter % 100 == 0:
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
self.
|
923 |
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
924 |
|
925 |
class Echo(nn.Module):
|
@@ -999,8 +1125,8 @@ class Echo(nn.Module):
|
|
999 |
if f0d is not None:
|
1000 |
encoder_inputs["f0d"] = f0d
|
1001 |
|
1002 |
-
encoder_outputs = self.encoder(encoder_inputs)
|
1003 |
-
logits = self.decoder(input_ids, encoder_outputs)
|
1004 |
|
1005 |
loss = None
|
1006 |
if labels is not None:
|
@@ -1017,6 +1143,7 @@ class Echo(nn.Module):
|
|
1017 |
"encoder_output": encoder_outputs,
|
1018 |
}
|
1019 |
|
|
|
1020 |
def device(self):
|
1021 |
return next(self.parameters()).device
|
1022 |
@property
|
@@ -1071,7 +1198,7 @@ class Echo(nn.Module):
|
|
1071 |
print(f"{module_type}: {count}")
|
1072 |
|
1073 |
def register_gradient_hooks(self):
|
1074 |
-
|
1075 |
for name, param in self.named_parameters():
|
1076 |
if param.requires_grad:
|
1077 |
if "encoder" in name:
|
@@ -1096,6 +1223,623 @@ class Echo(nn.Module):
|
|
1096 |
return None
|
1097 |
|
1098 |
def reset_counter(self):
|
|
|
1099 |
self._counter = 0
|
1100 |
print("Counter reset to 0.")
|
1101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import pyworld as pw
|
3 |
import os
|
4 |
+
from torch.amp import autocast
|
5 |
import math, random
|
6 |
import warnings
|
7 |
import logging
|
|
|
11 |
import torchaudio
|
12 |
import torch.nn.functional as F
|
13 |
import torch.nn.init as init
|
14 |
+
from torch import nn, einsum, broadcast_tensors, Tensor
|
15 |
import numpy as np
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
from typing import Optional, Dict, Union, List, Tuple, Any
|
19 |
from functools import partial
|
20 |
from datetime import datetime
|
21 |
+
from datasets import load_dataset, Audio
|
22 |
from transformers.trainer_seq2seq import Seq2SeqTrainer
|
23 |
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
24 |
import transformers
|
25 |
import evaluate
|
26 |
from dataclasses import dataclass
|
27 |
+
from math import pi, log
|
28 |
|
29 |
+
torch.backends.cudnn.allow_tf32 = True
|
30 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
31 |
+
torch.set_float32_matmul_precision('high')
|
32 |
+
transformers.utils.logging.set_verbosity_error()
|
33 |
+
|
34 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
dtype = torch.float32
|
36 |
|
37 |
+
warnings.filterwarnings("ignore")
|
38 |
+
logging.basicConfig(level=logging.ERROR)
|
39 |
+
|
40 |
extractor = None
|
41 |
tokenizer = None
|
42 |
optimizer = None
|
|
|
182 |
plt.show()
|
183 |
return fig
|
184 |
|
185 |
+
def dict_to(d, device, dtype=dtype):
|
186 |
+
"""Because PyTorch should have this built-in but doesn't"""
|
187 |
+
return {k: v.to(device, dtype) if isinstance(v, torch.Tensor) else v
|
188 |
+
for k, v in d.items()}
|
189 |
+
|
190 |
def exists(v):
|
191 |
return v is not None
|
192 |
|
|
|
242 |
def get_dtype():
|
243 |
return torch.float32 if torch.cuda.is_available() else torch.float64
|
244 |
|
245 |
+
def tox():
|
246 |
return {"device": get_device(), "dtype": get_dtype()}
|
247 |
|
248 |
def sinusoids(length, channels, max_timescale=10000):
|
|
|
253 |
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
254 |
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
255 |
|
256 |
+
def rotate_half(x):
|
257 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
258 |
+
x1, x2 = x.unbind(dim = -1)
|
259 |
+
x = torch.stack((-x2, x1), dim = -1)
|
260 |
+
return rearrange(x, '... d r -> ... (d r)')
|
261 |
+
|
262 |
+
def broadcat(tensors, dim = -1):
|
263 |
+
broadcasted_tensors = broadcast_tensors(*tensors)
|
264 |
+
return torch.cat(broadcasted_tensors, dim = dim)
|
265 |
+
|
266 |
+
def slice_at_dim(t, dim_slice: slice, *, dim):
|
267 |
+
dim += (t.ndim if dim < 0 else 0)
|
268 |
+
colons = [slice(None)] * t.ndim
|
269 |
+
colons[dim] = dim_slice
|
270 |
+
return t[tuple(colons)]
|
271 |
+
|
272 |
+
def align_f0(f0, ctx):
|
273 |
+
b, l = f0.shape
|
274 |
+
if l == ctx:
|
275 |
+
return f0.squeeze(0).float()
|
276 |
+
frames_per_token = l / ctx
|
277 |
+
idx = torch.arange(ctx, device=device, dtype=dtype)
|
278 |
+
src_idx = (idx * frames_per_token).long().clamp(0, l-1)
|
279 |
+
batch_idx = torch.arange(b, device=device, dtype=dtype).unsqueeze(1)
|
280 |
+
f0 = f0[batch_idx, src_idx]
|
281 |
+
return f0.squeeze(0).float()
|
282 |
+
|
283 |
+
def align_f0(f0, target_length, method='nearest', device=device, dtype=dtype):
|
284 |
+
if device is None:
|
285 |
+
device = f0.device
|
286 |
+
if dtype is None:
|
287 |
+
dtype = f0.dtype
|
288 |
+
original_shape = f0.shape
|
289 |
+
squeeze_batch = False
|
290 |
+
reshape_back = None
|
291 |
|
292 |
+
if f0.dim() == 1:
|
293 |
+
f0 = f0.unsqueeze(0)
|
294 |
+
squeeze_batch = True
|
295 |
+
elif f0.dim() == 2:
|
296 |
+
pass
|
297 |
+
elif f0.dim() == 3:
|
298 |
+
batch_size, seq_len, length = f0.shape
|
299 |
+
f0 = f0.view(-1, length)
|
300 |
+
reshape_back = (batch_size, seq_len)
|
|
|
301 |
else:
|
302 |
+
raise ValueError(f"F0 tensor must be 1D, 2D, or 3D, got {f0.dim()}D")
|
303 |
+
batch_size, current_length = f0.shape
|
304 |
+
if current_length == target_length:
|
305 |
+
result = f0
|
306 |
+
elif method == 'nearest':
|
307 |
+
frames_per_token = current_length / target_length
|
308 |
+
target_indices = torch.arange(target_length, device=device, dtype=torch.float32)
|
309 |
+
source_indices = (target_indices * frames_per_token).long().clamp(0, current_length - 1)
|
310 |
+
batch_indices = torch.arange(batch_size, device=device, dtype=torch.long).unsqueeze(1)
|
311 |
+
result = f0[batch_indices, source_indices]
|
312 |
+
else:
|
313 |
+
import torch.nn.functional as F
|
314 |
+
f0_for_interp = f0.unsqueeze(1)
|
315 |
+
mode_map = {'linear': 'linear', 'cubic': 'bicubic'}
|
316 |
+
if method not in mode_map:
|
317 |
+
raise ValueError(f"Method '{method}' not supported. Use 'nearest', 'linear', or 'cubic'")
|
318 |
+
|
319 |
+
result = F.interpolate(
|
320 |
+
f0_for_interp.float(),
|
321 |
+
size=target_length,
|
322 |
+
mode=mode_map[method],
|
323 |
+
align_corners=False
|
324 |
+
).squeeze(1)
|
325 |
|
326 |
+
if reshape_back is not None:
|
327 |
+
result = result.view(reshape_back[0], reshape_back[1], target_length)
|
328 |
+
elif squeeze_batch:
|
329 |
+
result = result.squeeze(0)
|
330 |
+
return result.to(dtype)
|
331 |
|
332 |
class rotary(nn.Module):
|
333 |
_seen = set()
|
334 |
def __init__(self, dims, max_ctx=1500, theta=10000, learned_freq=False, radii=False,
|
335 |
+
learned_radius=False, learned_theta=False, learned_pitch=False, debug: List[str] = [],
|
336 |
+
use_pbias=False, use_2d_axial=False, spec_shape=None):
|
337 |
super().__init__()
|
338 |
|
339 |
+
self.use_pbias = False
|
340 |
+
self.use_2d_axial = use_2d_axial
|
341 |
+
self.spec_shape = spec_shape
|
342 |
+
self.last_f0_theta = None
|
343 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
344 |
self.dtype = torch.float32
|
345 |
self.debug = debug
|
|
|
359 |
|
360 |
self.theta = nn.Parameter(torch.tensor(theta, device=self.device, dtype=self.dtype), requires_grad=True)
|
361 |
self.pitch_scale = nn.Parameter(torch.tensor(pitch_scale, device=self.device, dtype=self.dtype), requires_grad=True)
|
362 |
+
|
363 |
+
if use_2d_axial and spec_shape is not None:
|
364 |
+
time_frames, freq_bins = spec_shape
|
365 |
+
self.time_frames = time_frames
|
366 |
+
self.freq_bins = freq_bins
|
367 |
+
|
368 |
+
time_theta = 50.0
|
369 |
+
time_freqs = 1.0 / (time_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
|
370 |
+
self.register_buffer('time_freqs', time_freqs)
|
371 |
+
|
372 |
+
freq_theta = 100.0
|
373 |
+
freq_freqs = 1.0 / (freq_theta ** (torch.arange(0, dims, 4)[:(dims // 4)].float() / dims))
|
374 |
+
self.register_buffer('freq_freqs', freq_freqs)
|
375 |
+
else:
|
376 |
+
freqs = 1. / (theta ** (torch.arange(0, dims, 2, device=self.device, dtype=self.dtype)[:(dims // 2)].float() / dims))
|
377 |
+
self.freqs = nn.Parameter(torch.tensor(freqs, device=self.device, dtype=self.dtype), requires_grad=True)
|
378 |
self.radius = nn.Parameter(torch.ones(radius, device=self.device, dtype=self.dtype), requires_grad=True)
|
379 |
|
380 |
+
def compute_2d_axial_freqs(self, seq_len):
|
381 |
+
if not self.use_2d_axial:
|
382 |
+
return None
|
383 |
+
time_frames = self.time_frames
|
384 |
+
freq_bins = self.freq_bins
|
385 |
+
|
386 |
+
t = torch.arange(seq_len, device=self.device, dtype=self.dtype)
|
387 |
+
t_x = (t % time_frames).float()
|
388 |
+
t_y = torch.div(t, time_frames, rounding_mode='floor').float()
|
389 |
+
freqs_x = torch.outer(t_x, self.time_freqs)
|
390 |
+
freqs_y = torch.outer(t_y, self.freq_freqs)
|
391 |
+
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
392 |
+
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
393 |
+
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
394 |
+
|
395 |
+
def align_f0(self, f0, ctx):
|
396 |
+
b, l = f0.shape
|
397 |
+
if l == ctx:
|
398 |
+
return f0.squeeze(0).float()
|
399 |
+
frames_per_token = l / ctx
|
400 |
+
idx = torch.arange(ctx, device=self.device, dtype=self.dtype)
|
401 |
+
src_idx = (idx * frames_per_token).long().clamp(0, l-1)
|
402 |
+
batch_idx = torch.arange(b, device=self.device, dtype=self.dtype).unsqueeze(1)
|
403 |
+
f0 = f0[batch_idx, src_idx]
|
404 |
+
return f0.squeeze(0).float()
|
405 |
+
|
406 |
+
def get_pitch_bias(self, f0):
|
407 |
+
if f0 is None:
|
408 |
+
return None
|
409 |
+
f0_flat = f0.squeeze().float()
|
410 |
+
f0_norm = (f0_flat - f0_flat.mean()) / (f0_flat.std() + 1e-8)
|
411 |
+
f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1),
|
412 |
+
f0_norm.unsqueeze(1)) * self.pitch_scale)
|
413 |
+
return f0_sim.unsqueeze(0).unsqueeze(0)
|
414 |
|
415 |
+
def forward(self, x=None, f0=None, layer=None, input_type="audio") -> Tensor:
|
416 |
if isinstance(x, int):
|
417 |
ctx = x
|
418 |
+
elif isinstance(x, torch.Tensor) and x.ndim == 3:
|
419 |
batch, ctx, dims = x.shape
|
420 |
+
else:
|
421 |
+
batch, head, ctx, head_dim = x.shape
|
422 |
+
|
423 |
+
if self.use_2d_axial and input_type == "spectrogram":
|
424 |
+
freqs_2d = self.compute_2d_axial_freqs(ctx)
|
425 |
+
if freqs_2d is not None:
|
426 |
+
return freqs_2d.unsqueeze(0)
|
427 |
+
|
428 |
+
t = torch.arange(ctx, device=self.device, dtype=self.dtype)
|
429 |
+
|
430 |
if f0 is not None:
|
431 |
+
f0_mean = f0.mean() + 1e-8
|
432 |
+
theta = f0_mean * self.pitch_scale
|
433 |
+
freqs = 1.0 / (theta ** (torch.arange(0, self.dims, 2, device=self.device, dtype=self.dtype)[:(self.dims // 2)].float() / self.dims))
|
434 |
+
if "rotary" in self.debug:
|
435 |
+
print(f"{layer}: {theta:.2f} : {f0_mean:.2f} : {ctx} ")
|
436 |
+
else:
|
437 |
freqs = self.freqs
|
438 |
|
439 |
+
freqs = t[:, None] * freqs[None, :]
|
440 |
+
|
|
|
441 |
if self.radii:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
if f0 is not None:
|
443 |
+
radius = self.align_f0(f0, ctx)
|
444 |
+
else:
|
445 |
+
radius = self.radius
|
446 |
+
if "rotary" in self.debug:
|
447 |
+
print(f"{layer} radius: {radius} ctx: {ctx}")
|
448 |
+
else:
|
449 |
+
radius = freqs
|
450 |
+
|
451 |
+
freqs = torch.polar(torch.ones_like(radius), freqs.unsqueeze(0))
|
452 |
+
|
453 |
+
self._counter += 1
|
454 |
+
return freqs.unsqueeze(0)
|
|
|
|
|
455 |
|
456 |
@staticmethod
|
457 |
def apply_rotary(x, freqs):
|
458 |
+
x1 = x[..., :freqs.shape[-1]*2]
|
459 |
+
x2 = x[..., freqs.shape[-1]*2:]
|
460 |
+
orig_shape = x1.shape
|
461 |
+
if x1.ndim == 2:
|
462 |
+
x1 = x1.unsqueeze(0)
|
463 |
+
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
464 |
+
x1 = torch.view_as_complex(x1) * freqs
|
465 |
+
x1 = torch.view_as_real(x1).flatten(-2)
|
466 |
+
x1 = x1.view(orig_shape)
|
467 |
+
return torch.cat([x1.type_as(x), x2], dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
class MultiheadA(nn.Module):
|
470 |
_seen = set()
|
471 |
rbf = False
|
472 |
def __init__(self, dims: int, head: int, rotary_emb: bool = True,
|
473 |
+
zero_val: float = 1e-4, minz: float = 1e-6, maxz: float = 1e-3, debug: List[str] = [], optim_attn=False):
|
|
|
474 |
super(MultiheadA, self).__init__()
|
475 |
|
476 |
self.dims = dims
|
477 |
self.head = head
|
478 |
self.head_dim = dims // head
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
self.debug = debug
|
480 |
self._counter = 0
|
481 |
|
482 |
+
self.q = Linear(dims, dims).to(device, dtype)
|
483 |
+
self.k = Linear(dims, dims, bias=False).to(device, dtype)
|
484 |
+
self.v = Linear(dims, dims).to(device, dtype)
|
485 |
+
self.o = Linear(dims, dims).to(device, dtype)
|
486 |
+
|
487 |
self.pad_token = 0
|
488 |
self.rotary_emb = rotary_emb
|
489 |
self.minz = minz
|
490 |
self.maxz = maxz
|
491 |
self.zero_val = zero_val
|
492 |
self.optim_attn = optim_attn
|
493 |
+
self.fzero = nn.Parameter(torch.tensor(zero_val, device=device, dtype=dtype), requires_grad=False)
|
494 |
|
495 |
if rotary_emb:
|
496 |
+
self.rope_2d = rotary(
|
497 |
+
dims=self.head_dim,
|
498 |
+
use_2d_axial=False,
|
499 |
+
spec_shape=(1500, 128),
|
500 |
+
debug=debug
|
501 |
+
)
|
502 |
self.rope = rotary(
|
503 |
dims=self.head_dim,
|
504 |
debug = debug,
|
|
|
509 |
learned_radius=False,
|
510 |
)
|
511 |
else:
|
512 |
+
self.rope_2d = None
|
513 |
+
self.rope = None
|
514 |
+
|
515 |
def enhanced_attention_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
516 |
scale = (self.dims // self.head) ** -0.25
|
517 |
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
|
|
524 |
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
|
525 |
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
|
526 |
|
527 |
+
def forward(self, x: Tensor, xa: Tensor = None, f0: Tensor = None, mask: Tensor = None, layer = None, feature_type="audio") -> tuple:
|
528 |
+
x = x.to(device, dtype)
|
529 |
+
if xa is not None:
|
530 |
+
xa = xa.to(device, dtype)
|
531 |
+
|
532 |
+
batch, ctx, dims = x.shape
|
533 |
scale = (self.dims // self.head) ** -0.25
|
534 |
|
535 |
+
z = default(xa, x).to(device, dtype)
|
536 |
+
q = self.q(x)
|
537 |
+
k = self.k(z)
|
538 |
+
v = self.v(z)
|
539 |
+
qlen = q.shape[1]
|
540 |
+
klen = k.shape[1]
|
541 |
|
542 |
if self.rotary_emb:
|
|
|
|
|
|
|
543 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
544 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
545 |
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
546 |
+
qlen = q.shape[2]
|
547 |
+
klen = k.shape[2]
|
548 |
+
|
549 |
+
if feature_type == "spectrogram":
|
550 |
+
input_type="spectrogram"
|
551 |
+
else:
|
552 |
+
input_type="audio"
|
553 |
+
q = self.rope.apply_rotary(q, (self.rope(qlen, f0=f0, layer=layer, input_type=input_type)))
|
554 |
+
k = self.rope.apply_rotary(k, (self.rope(klen, f0=f0, layer=layer, input_type=input_type)))
|
555 |
else:
|
556 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
557 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
558 |
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
559 |
batch, head, ctx, head_dim = q.shape
|
560 |
+
|
561 |
if self.rbf:
|
562 |
qk = self.enhanced_attention_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
|
563 |
|
564 |
qk = (q * scale) @ (k * scale).transpose(-1, -2)
|
565 |
+
if f0 is not None and self.rope.use_pbias:
|
566 |
+
pbias = self.rope.use_pbias(f0)
|
567 |
if pbias is not None:
|
568 |
qk = qk + pbias[:,:,:q.shape[2],:q.shape[2]]
|
569 |
token_ids = k[:, :, :, 0]
|
570 |
zscale = torch.ones_like(token_ids)
|
571 |
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
572 |
+
zscale[token_ids.float() == self.pad_token] = fzero
|
573 |
|
574 |
if mask is not None:
|
575 |
mask = mask[:q.shape[2], :q.shape[2]]
|
|
|
579 |
wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
|
580 |
|
581 |
if "multihead" in self.debug and self._counter % 100 == 0:
|
582 |
+
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape} - {qk.shape}, wv shape: {wv.shape}")
|
|
|
|
|
583 |
self._counter += 1
|
584 |
return self.o(wv), qk.detach()
|
585 |
|
|
|
628 |
s = self.s_gate(x) * s_feat
|
629 |
w = self.w_gate(x) * w_feat
|
630 |
p = self.p_gate(x) * p_feat
|
|
|
631 |
comb = torch.cat([s, w, p], dim=-1)
|
632 |
return self.integ(comb)
|
633 |
|
|
|
637 |
tgate=True, mgate=False, cgate=False, mem_size=512, features=None):
|
638 |
super().__init__()
|
639 |
|
|
|
|
|
640 |
self.dims = dims
|
641 |
self.head = head
|
642 |
self.ctx = ctx
|
|
|
676 |
if not any([t_gate, m_gate, c_gate]):
|
677 |
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
678 |
|
679 |
+
def forward(self, x, xa=None, mask=None, f0=None, mode=None, layer=None, feature_type="audio") -> Tensor:
|
680 |
+
x = x.to(device, dtype)
|
681 |
+
if xa is not None:
|
682 |
+
xa = xa.to(device, dtype)
|
683 |
+
|
684 |
bln = self.blend
|
685 |
+
x = x + self.attna(self.lna(x), xa=None, mask=mask, f0=f0, layer=layer, feature_type=feature_type)[0]
|
686 |
|
687 |
if self.attnb and xa is not None:
|
688 |
+
c = self.attnb(self.lnb(x), xa=xa, f0=f0, mask=None, layer=layer, feature_type=feature_type)[0]
|
689 |
b = torch.sigmoid(bln)
|
690 |
x = b * x + (1 - b) * c
|
691 |
|
|
|
700 |
gate = self.m_gate(normx)
|
701 |
x = x + gate * mlp_out
|
702 |
|
703 |
+
elif self.c_gate and mode is not None:
|
704 |
gate_output = self.c_gate(normx, self.features)
|
705 |
x = x + gate_output
|
706 |
|
|
|
725 |
|
726 |
return x
|
727 |
|
728 |
+
class FEncoder(nn.Module):
|
729 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1, use_rope=False, spec_shape=None):
|
730 |
super().__init__()
|
731 |
|
732 |
+
self.head = head
|
733 |
+
self.head_dim = dims // head
|
734 |
+
self.dropout = 0.01
|
735 |
+
self.use_rope = use_rope
|
736 |
+
self.dims = dims
|
737 |
|
738 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
739 |
act_fn = act_map.get(act, nn.GELU())
|
740 |
|
741 |
self.encoder = nn.Sequential(
|
742 |
+
Conv1d(input_dims, dims, kernel_size=kernel_size, stride=stride, padding=kernel_size//2), act_fn,
|
743 |
+
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
|
744 |
+
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims), act_fn)
|
745 |
|
746 |
+
if use_rope:
|
747 |
+
if spec_shape is not None:
|
748 |
+
self.rope = rotary(
|
749 |
+
dims=self.head_dim,
|
750 |
+
use_2d_axial=True,
|
751 |
+
spec_shape=spec_shape, debug=[])
|
752 |
+
else:
|
753 |
+
self.rope = rotary(
|
754 |
+
dims=self.head_dim,
|
755 |
+
use_2d_axial=False, debug=[])
|
756 |
+
else:
|
757 |
+
self.rope = None
|
758 |
+
self.positional = lambda length: sinusoids(length, dims)
|
759 |
+
|
760 |
+
self.norm = RMSNorm(dims)
|
761 |
+
self._norm = RMSNorm(dims)
|
762 |
+
|
763 |
+
def apply_rope_to_features(self, x, f0=None, layer=None, feature_type="audio"):
|
764 |
+
if not self.use_rope or self.rope is None:
|
765 |
+
return x
|
766 |
+
|
767 |
+
batch, seq_len, dims = x.shape
|
768 |
+
x = x.view(batch, seq_len, self.head, self.head_dim).permute(0, 2, 1, 3)
|
769 |
+
if feature_type == "spectrogram" and hasattr(self.rope, 'use_2d_axial') and self.rope.use_2d_axial:
|
770 |
+
rope_freqs = self.rope(seq_len, f0=f0, layer=layer, input_type="spectrogram")
|
771 |
+
else:
|
772 |
+
rope_freqs = self.rope(seq_len, f0=f0, layer=layer, input_type="audio")
|
773 |
+
x = self.rope.apply_rotary(x, rope_freqs)
|
774 |
+
x = x.permute(0, 2, 1, 3).contiguous().view(batch, seq_len, dims)
|
775 |
+
return x
|
776 |
+
|
777 |
+
def forward(self, x, f0=None, layer=None, feature_type="audio"):
|
778 |
x = self.encoder(x).permute(0, 2, 1)
|
779 |
+
if self.use_rope:
|
780 |
+
x = self.apply_rope_to_features(x, f0=f0, layer=layer, feature_type=feature_type)
|
781 |
+
else:
|
782 |
+
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
|
783 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
784 |
+
x = self._norm(x)
|
785 |
return x
|
786 |
+
|
787 |
class WEncoder(nn.Module):
|
788 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
|
789 |
super().__init__()
|
790 |
|
791 |
+
self.head = head
|
792 |
self.head_dim = dims // head
|
793 |
self.dropout = 0.01
|
794 |
+
self.use_rope = use_rope
|
795 |
+
self.dims = dims
|
796 |
|
797 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
798 |
act_fn = act_map.get(act, nn.GELU())
|
|
|
805 |
self.encoder = nn.Sequential(
|
806 |
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims//8), act_fn,
|
807 |
Conv1d(dims, dims, kernel_size=1), act_fn)
|
808 |
+
if use_rope:
|
809 |
+
self.rope = rotary(
|
810 |
+
dims=self.head_dim,
|
811 |
+
use_2d_axial=False,
|
812 |
+
theta=50.0, debug=[])
|
813 |
+
else:
|
814 |
+
self.rope = None
|
815 |
+
self.positional = lambda length: sinusoids(length, dims)
|
816 |
self.norm = RMSNorm(dims)
|
817 |
+
|
818 |
+
def apply_rope_to_features(self, x, f0=None, layer=None):
|
819 |
+
if not self.use_rope or self.rope is None:
|
820 |
+
return x
|
821 |
+
batch, seq_len, dims = x.shape
|
822 |
+
x = x.view(batch, seq_len, self.head, self.head_dim).permute(0, 2, 1, 3)
|
823 |
+
rope_freqs = self.rope(seq_len, f0=f0, layer=layer, input_type="waveform")
|
824 |
+
x = self.rope.apply_rotary(x, rope_freqs)
|
825 |
+
x = x.permute(0, 2, 1, 3).contiguous().view(batch, seq_len, dims)
|
826 |
+
return x
|
827 |
|
828 |
+
def forward(self, x, f0=None, layer=None, feature_type="waveform"):
|
829 |
x = self.downsample(x)
|
830 |
x = self.encoder(x)
|
831 |
x = x.permute(0, 2, 1)
|
832 |
+
if self.use_rope:
|
833 |
+
x = self.apply_rope_to_features(x, f0=f0, layer=layer)
|
834 |
+
else:
|
835 |
+
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
|
836 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
837 |
return self.norm(x)
|
838 |
|
839 |
+
class PEncoder(nn.Module):
|
840 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act, use_rope=False):
|
841 |
super().__init__()
|
842 |
|
843 |
+
self.head = head
|
844 |
+
self.head_dim = dims // head
|
845 |
+
self.dropout = 0.01
|
846 |
+
self.use_rope = use_rope
|
847 |
+
self.dims = dims
|
848 |
|
849 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
850 |
act_fn = act_map.get(act, nn.GELU())
|
851 |
|
852 |
self.encoder = nn.Sequential(
|
853 |
+
Conv1d(input_dims, dims//4, kernel_size=7, stride=8, padding=3), act_fn,
|
854 |
+
Conv1d(dims//4, dims//2, kernel_size=5, stride=4, padding=2), act_fn,
|
855 |
+
Conv1d(dims//2, dims, kernel_size=5, stride=5, padding=2), act_fn)
|
856 |
|
857 |
+
if use_rope:
|
858 |
+
self.rope = rotary(
|
859 |
+
dims=self.head_dim,
|
860 |
+
use_2d_axial=False,
|
861 |
+
theta=100.0, debug=[])
|
862 |
+
else:
|
863 |
+
self.rope = None
|
864 |
+
self.positional = lambda length: sinusoids(length, dims)
|
865 |
self.norm = RMSNorm(dims)
|
|
|
866 |
|
867 |
+
def apply_rope_to_features(self, x, f0=None, layer=None):
|
868 |
+
if not self.use_rope or self.rope is None:
|
869 |
+
return x
|
870 |
+
batch, seq_len, dims = x.shape
|
871 |
+
x = x.view(batch, seq_len, self.head, self.head_dim).permute(0, 2, 1, 3)
|
872 |
+
rope_freqs = self.rope(seq_len, f0=f0, layer=layer, input_type="pitch")
|
873 |
+
x = self.rope.apply_rotary(x, rope_freqs)
|
874 |
+
x = x.permute(0, 2, 1, 3).contiguous().view(batch, seq_len, dims)
|
875 |
return x
|
|
|
|
|
|
|
|
|
876 |
|
877 |
+
def forward(self, x, f0=None, layer=None, feature_type="pitch"):
|
878 |
+
x = self.encoder(x).permute(0, 2, 1)
|
879 |
+
if self.use_rope:
|
880 |
+
x = self.apply_rope_to_features(x, f0=f0, layer=layer)
|
881 |
+
else:
|
882 |
+
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
883 |
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
884 |
+
x = self.norm(x)
|
885 |
return x
|
886 |
|
887 |
class AudioEncoder(nn.Module):
|
|
|
894 |
self.head = head
|
895 |
self.ctx = ctx
|
896 |
self.head_dim = dims // head
|
|
|
|
|
|
|
|
|
|
|
897 |
self.debug = debug
|
898 |
self._counter = 0
|
899 |
|
900 |
self.features = features
|
901 |
self.dropout = 0.01
|
|
|
902 |
|
903 |
self.rope = rotary(
|
904 |
+
dims=self.head_dim,
|
905 |
+
)
|
906 |
|
907 |
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(),
|
908 |
"tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
|
|
939 |
FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)
|
940 |
for _ in range(layer)])
|
941 |
|
942 |
+
self.rope_2d = rotary(
|
943 |
+
dims=self.head_dim,
|
944 |
+
use_2d_axial=True,
|
945 |
+
spec_shape=(ctx, mels),
|
946 |
+
debug=debug
|
947 |
+
)
|
948 |
+
|
949 |
+
self.rope_1d = rotary(
|
950 |
+
dims=self.head_dim,
|
951 |
+
use_2d_axial=False,
|
952 |
+
debug=debug
|
953 |
+
)
|
954 |
+
|
955 |
+
def forward(self, enc, f0=None, layer="ENC"):
|
956 |
+
enc = dict_to(enc, device, dtype)
|
957 |
+
|
958 |
if self._counter < 1:
|
959 |
+
s = enc.get("spectrogram")
|
960 |
+
w = enc.get("waveform")
|
961 |
+
p = f0 if f0 is not None else default(enc.get("pitch"), enc.get("f0"))
|
962 |
plot_waveform(x=s, w=w, p=p, hop_length=128)
|
963 |
|
964 |
+
out = {}
|
965 |
+
out.update(enc)
|
966 |
+
|
967 |
for f in self.features:
|
968 |
+
if f in enc and f in self.blocks:
|
969 |
+
x = enc[f]
|
970 |
for block in self.blocks[f]:
|
971 |
+
x = block(x, f0=f0, layer=layer, feature_type=f)
|
972 |
+
out[f] = x
|
973 |
+
|
974 |
if "encoder" in self.debug and self._counter % 100 == 0:
|
975 |
+
names = list(x.keys())
|
976 |
+
shapes = {k: v.shape for k, v in x.items()}
|
977 |
+
print(f"Step {self._counter}: mode: {names}: shapes: {shapes}")
|
|
|
|
|
|
|
|
|
978 |
self._counter += 1
|
979 |
+
return out
|
980 |
|
981 |
class TextDecoder(nn.Module):
|
982 |
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer: int, cross_attn: bool,
|
|
|
988 |
self.ctx = ctx
|
989 |
self.head_dim = dims // head
|
990 |
|
991 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
992 |
+
self.dtype = torch.float32
|
|
|
|
|
993 |
self.debug = debug
|
994 |
self._counter = 0
|
995 |
|
|
|
1016 |
|
1017 |
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
|
1018 |
self.register_buffer("mask", mask, persistent=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1019 |
|
1020 |
+
def forward(self, x, enc, f0=None, order=None, layer='DEC') -> Tensor:
|
1021 |
+
enc = dict_to(enc, device, dtype)
|
|
|
1022 |
x = x.to(device)
|
1023 |
+
bln = self.blend
|
1024 |
+
|
1025 |
if order is None:
|
1026 |
order = self.features
|
1027 |
+
|
1028 |
mask = self.mask[:x.shape[1], :x.shape[1]]
|
1029 |
x = self.token(x) + self.positional[:x.shape[1]]
|
1030 |
x = F.dropout(x, p=self.dropout, training=self.training)
|
1031 |
+
|
1032 |
for block in self.block:
|
1033 |
+
x = block(x, xa=None, f0=f0, mask=mask, layer=layer)
|
1034 |
|
1035 |
for f in order:
|
1036 |
+
if f in enc:
|
1037 |
+
xa = enc[f]
|
1038 |
for block in self.blocks[f]:
|
1039 |
+
out = block(x=x, xa=xa, f0=f0, mask=None, layer=layer)
|
1040 |
+
|
1041 |
a = torch.sigmoid(bln[f])
|
1042 |
x = a * out + (1 - a) * x
|
1043 |
+
|
|
|
1044 |
if "decoder" in self.debug and self._counter % 100 == 0:
|
1045 |
+
print(f"Step {self._counter}: Decoder output shape: {x.shape}, enc keys: {list(enc.keys())}, order: {order}")
|
1046 |
+
self._counter += 1
|
1047 |
+
|
1048 |
+
x = self.ln_dec(x)
|
1049 |
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
1050 |
|
1051 |
class Echo(nn.Module):
|
|
|
1125 |
if f0d is not None:
|
1126 |
encoder_inputs["f0d"] = f0d
|
1127 |
|
1128 |
+
encoder_outputs = self.encoder(encoder_inputs, f0=f0)
|
1129 |
+
logits = self.decoder(input_ids, encoder_outputs, f0=f0d)
|
1130 |
|
1131 |
loss = None
|
1132 |
if labels is not None:
|
|
|
1143 |
"encoder_output": encoder_outputs,
|
1144 |
}
|
1145 |
|
1146 |
+
@property
|
1147 |
def device(self):
|
1148 |
return next(self.parameters()).device
|
1149 |
@property
|
|
|
1198 |
print(f"{module_type}: {count}")
|
1199 |
|
1200 |
def register_gradient_hooks(self):
|
1201 |
+
"""Add this method to your Echo model class"""
|
1202 |
for name, param in self.named_parameters():
|
1203 |
if param.requires_grad:
|
1204 |
if "encoder" in name:
|
|
|
1223 |
return None
|
1224 |
|
1225 |
def reset_counter(self):
|
1226 |
+
"""Reset the internal counter for debugging purposes."""
|
1227 |
self._counter = 0
|
1228 |
print("Counter reset to 0.")
|
1229 |
|
1230 |
+
metric = evaluate.load(path="wer")
|
1231 |
+
|
1232 |
+
def align_f0(f0, ctx):
|
1233 |
+
ctx = torch.tensor(ctx)
|
1234 |
+
bat, length = f0.shape
|
1235 |
+
if length == ctx:
|
1236 |
+
return f0
|
1237 |
+
frames = length / ctx
|
1238 |
+
idx = torch.arange(ctx, device=f0.device)
|
1239 |
+
idx = (idx * frames).long()
|
1240 |
+
batch_idx = torch.arange(bat, device=f0.device).unsqueeze(1)
|
1241 |
+
return f0[batch_idx, idx.unsqueeze(0).expand(bat, -1)]
|
1242 |
+
|
1243 |
+
@dataclass
|
1244 |
+
class DataCollator:
|
1245 |
+
tokenizer: Any
|
1246 |
+
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
|
1247 |
+
pad_token_id = tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else 0
|
1248 |
+
bos_token_id = tokenizer.bos_token_id if hasattr(tokenizer, 'bos_token_id') else 1
|
1249 |
+
|
1250 |
+
batch = {}
|
1251 |
+
|
1252 |
+
if "spectrogram" in features[0] and features[0]["spectrogram"] is not None:
|
1253 |
+
spectrogram_list = [f["spectrogram"] for f in features]
|
1254 |
+
max_len_feat = max(f.shape[-1] for f in spectrogram_list)
|
1255 |
+
pad_spectrogram = []
|
1256 |
+
for feat in spectrogram_list:
|
1257 |
+
current_len = feat.shape[-1]
|
1258 |
+
padding = max_len_feat - current_len
|
1259 |
+
if padding > 0:
|
1260 |
+
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
1261 |
+
else:
|
1262 |
+
pad_feat = feat
|
1263 |
+
pad_spectrogram.append(pad_feat)
|
1264 |
+
batch["spectrogram"] = torch.stack(pad_spectrogram)
|
1265 |
+
|
1266 |
+
if "waveform" in features[0] and features[0]["waveform"] is not None:
|
1267 |
+
waveform_list = [f["waveform"] for f in features]
|
1268 |
+
max_len_wav = max(w.shape[-1] for w in waveform_list)
|
1269 |
+
pad_waveforms = []
|
1270 |
+
for wav in waveform_list:
|
1271 |
+
current_len = wav.shape[-1]
|
1272 |
+
padding = max_len_wav - current_len
|
1273 |
+
if padding > 0:
|
1274 |
+
if wav.ndim == 1:
|
1275 |
+
wav = wav.unsqueeze(0)
|
1276 |
+
pad_wav = F.pad(wav, (0, padding), mode='constant', value=pad_token_id)
|
1277 |
+
else:
|
1278 |
+
pad_wav = wav
|
1279 |
+
pad_waveforms.append(pad_wav)
|
1280 |
+
batch["waveform"] = torch.stack(pad_waveforms)
|
1281 |
+
|
1282 |
+
if "label" in features[0] and features[0]["label"] is not None:
|
1283 |
+
labels_list = [f["label"] for f in features]
|
1284 |
+
max_len = max(len(l) for l in labels_list)
|
1285 |
+
all_ids = []
|
1286 |
+
all_labels = []
|
1287 |
+
|
1288 |
+
for label in labels_list:
|
1289 |
+
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
|
1290 |
+
decoder_input = [bos_token_id] + label_list
|
1291 |
+
label_eos = label_list + [pad_token_id]
|
1292 |
+
input_len = max_len + 1 - len(decoder_input)
|
1293 |
+
label_len = max_len + 1 - len(label_eos)
|
1294 |
+
padded_input = decoder_input + [pad_token_id] * input_len
|
1295 |
+
padded_labels = label_eos + [pad_token_id] * label_len
|
1296 |
+
all_ids.append(padded_input)
|
1297 |
+
all_labels.append(padded_labels)
|
1298 |
+
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
|
1299 |
+
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
|
1300 |
+
|
1301 |
+
if "pitch" in features[0] and features[0]["pitch"] is not None:
|
1302 |
+
pitch_list = [f["pitch"] for f in features]
|
1303 |
+
max_len_pitch = max(e.shape[-1] for e in pitch_list)
|
1304 |
+
pad_pitch = []
|
1305 |
+
for pitch in pitch_list:
|
1306 |
+
current_len = pitch.shape[-1]
|
1307 |
+
padding = max_len_pitch - current_len
|
1308 |
+
if padding > 0:
|
1309 |
+
pad_pitch_item = F.pad(pitch, (0, padding), mode='constant', value=pad_token_id)
|
1310 |
+
else:
|
1311 |
+
pad_pitch_item = pitch
|
1312 |
+
pad_pitch.append(pad_pitch_item)
|
1313 |
+
batch["pitch"] = torch.stack(pad_pitch)
|
1314 |
+
|
1315 |
+
if "f0" in features[0] and features[0]["f0"] is not None:
|
1316 |
+
input_ids_batch = batch.get("input_ids", None)
|
1317 |
+
if input_ids_batch is not None:
|
1318 |
+
target_length = input_ids_batch.shape[-1]
|
1319 |
+
aligned_list = []
|
1320 |
+
original_list = []
|
1321 |
+
for feature in features:
|
1322 |
+
f0 = feature["f0"]
|
1323 |
+
original_list.append(f0)
|
1324 |
+
if f0.shape[-1] != target_length:
|
1325 |
+
aligned_f0 = align_f0(f0.unsqueeze(0), target_length).squeeze(0)
|
1326 |
+
else:
|
1327 |
+
aligned_f0 = f0
|
1328 |
+
aligned_list.append(aligned_f0)
|
1329 |
+
batch["f0d"] = torch.stack(aligned_list)
|
1330 |
+
batch["f0"] = torch.stack(original_list)
|
1331 |
+
|
1332 |
+
if "envelope" in features[0] and features[0]["envelope"] is not None:
|
1333 |
+
env_list = [f["envelope"] for f in features]
|
1334 |
+
max_len = max(f.shape[-1] for f in env_list)
|
1335 |
+
pad_env = []
|
1336 |
+
for feat in env_list:
|
1337 |
+
current_len = feat.shape[-1]
|
1338 |
+
padding = max_len_feat - current_len
|
1339 |
+
if padding > 0:
|
1340 |
+
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
1341 |
+
else:
|
1342 |
+
pad_feat = feat
|
1343 |
+
pad_env.append(pad_feat)
|
1344 |
+
batch["envelope"] = torch.stack(pad_env)
|
1345 |
+
|
1346 |
+
if "phase" in features[0] and features[0]["phase"] is not None:
|
1347 |
+
ph_list = [f["phase"] for f in features]
|
1348 |
+
max_len = max(f.shape[-1] for f in ph_list)
|
1349 |
+
pad_ph = []
|
1350 |
+
for feat in ph_list:
|
1351 |
+
current_len = feat.shape[-1]
|
1352 |
+
padding = max_len_feat - current_len
|
1353 |
+
if padding > 0:
|
1354 |
+
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
1355 |
+
else:
|
1356 |
+
pad_feat = feat
|
1357 |
+
pad_ph.append(pad_feat)
|
1358 |
+
batch["phase"] = torch.stack(pad_ph)
|
1359 |
+
|
1360 |
+
return batch
|
1361 |
+
|
1362 |
+
def hilbert_transform(x):
|
1363 |
+
N = x.shape[-1]
|
1364 |
+
xf = torch.fft.rfft(x)
|
1365 |
+
h = torch.zeros(N // 2 + 1, device=x.device, dtype=x.dtype)
|
1366 |
+
if N % 2 == 0:
|
1367 |
+
h[0] = h[N//2] = 1
|
1368 |
+
h[1:N//2] = 2
|
1369 |
+
else:
|
1370 |
+
h[0] = 1
|
1371 |
+
h[1:(N+1)//2] = 2
|
1372 |
+
return torch.fft.irfft(xf * h, n=N)
|
1373 |
+
|
1374 |
+
def analytic_signal(x):
|
1375 |
+
return x + 1j * hilbert_transform(x)
|
1376 |
+
|
1377 |
+
def hilbert_transform_2d(x, dim=-1):
|
1378 |
+
N = x.shape[dim]
|
1379 |
+
if dim == -1 or dim == len(x.shape) - 1:
|
1380 |
+
xf = torch.fft.rfft(x)
|
1381 |
+
else:
|
1382 |
+
xf = torch.fft.rfft(x, dim=dim)
|
1383 |
+
h_shape = [1] * len(x.shape)
|
1384 |
+
h_shape[dim] = N // 2 + 1
|
1385 |
+
h = torch.zeros(h_shape, device=x.device, dtype=x.dtype)
|
1386 |
+
if dim == -1 or dim == len(x.shape) - 1:
|
1387 |
+
if N % 2 == 0:
|
1388 |
+
h[..., 0] = h[..., -1] = 1
|
1389 |
+
h[..., 1:-1] = 2
|
1390 |
+
else:
|
1391 |
+
h[..., 0] = 1
|
1392 |
+
h[..., 1:] = 2
|
1393 |
+
else:
|
1394 |
+
pass
|
1395 |
+
return torch.fft.irfft(xf * h, n=N, dim=dim)
|
1396 |
+
|
1397 |
+
def hilbert_transform_true_2d(x):
|
1398 |
+
xf = torch.fft.rfft2(x)
|
1399 |
+
h1, h2 = torch.meshgrid(
|
1400 |
+
torch.fft.rfftfreq(x.shape[-2]) * 2 - 1,
|
1401 |
+
torch.fft.rfftfreq(x.shape[-1]) * 2 - 1,
|
1402 |
+
indexing='ij')
|
1403 |
+
h = -1j / (math.pi * (h1 + 1j*h2))
|
1404 |
+
h[0, 0] = 0
|
1405 |
+
return torch.fft.irfft2(xf * h.to(x.device))
|
1406 |
+
|
1407 |
+
def process_spectrogram_with_hilbert(spec):
|
1408 |
+
analytic = spec + 1j * hilbert_transform(spec)
|
1409 |
+
envelope = torch.abs(analytic)
|
1410 |
+
phase = torch.angle(analytic)
|
1411 |
+
return envelope, phase
|
1412 |
+
|
1413 |
+
def load_wave(wave_data, sample_rate):
|
1414 |
+
if isinstance(wave_data, str):
|
1415 |
+
waveform, sr = torchaudio.load(uri=wave_data, normalize=False)
|
1416 |
+
elif isinstance(wave_data, dict):
|
1417 |
+
waveform = torch.tensor(data=wave_data["array"]).float()
|
1418 |
+
sr = wave_data["sampling_rate"]
|
1419 |
+
else:
|
1420 |
+
raise TypeError("Invalid wave_data format.")
|
1421 |
+
|
1422 |
+
if waveform.dim() == 1:
|
1423 |
+
waveform = waveform.unsqueeze(0)
|
1424 |
+
|
1425 |
+
if sr != sample_rate:
|
1426 |
+
original_length = waveform.shape[1]
|
1427 |
+
target_length = int(original_length * (sample_rate / sr))
|
1428 |
+
|
1429 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
|
1430 |
+
waveform = resampler(waveform)
|
1431 |
+
|
1432 |
+
return waveform.flatten()
|
1433 |
+
|
1434 |
+
def extract_features(batch, tokenizer, spectrogram, waveforms, pitch, frequency=False,
|
1435 |
+
hop_length=128, fmin=0, fmax=8000, n_mels=128, n_fft=1024, sampling_rate=16000,
|
1436 |
+
pad_mode="constant", center=True, power=2.0, window_fn=torch.hann_window, mel_scale="htk",
|
1437 |
+
norm=None, normalized=False, downsamples=False, period=False, hilbert=False):
|
1438 |
+
|
1439 |
+
dtype = torch.float32
|
1440 |
+
device = torch.device("cuda:0")
|
1441 |
+
audio = batch["audio"]
|
1442 |
+
sampling_rate = audio["sampling_rate"]
|
1443 |
+
sr = audio["sampling_rate"]
|
1444 |
+
wav = load_wave(wave_data=audio, sample_rate=sr)
|
1445 |
+
|
1446 |
+
if spectrogram:
|
1447 |
+
transform = torchaudio.transforms.MelSpectrogram(
|
1448 |
+
f_max=fmax,
|
1449 |
+
f_min=fmin,
|
1450 |
+
n_mels=n_mels,
|
1451 |
+
sample_rate=sr,
|
1452 |
+
n_fft=n_fft,
|
1453 |
+
hop_length=hop_length,
|
1454 |
+
norm=norm,
|
1455 |
+
normalized=normalized,
|
1456 |
+
power=power,
|
1457 |
+
center=center,
|
1458 |
+
mel_scale=mel_scale,
|
1459 |
+
window_fn=window_fn,
|
1460 |
+
pad_mode=pad_mode)
|
1461 |
+
|
1462 |
+
mel_spectrogram = transform(wav)
|
1463 |
+
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
|
1464 |
+
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
|
1465 |
+
spec = (log_mel + 4.0) / 4.0
|
1466 |
+
spec = torch.tensor(spec)
|
1467 |
+
batch["spectrogram"] = spec
|
1468 |
+
|
1469 |
+
if hilbert:
|
1470 |
+
envelope_list = []
|
1471 |
+
phase_list = []
|
1472 |
+
|
1473 |
+
for ch_idx in range(spec.shape[0]):
|
1474 |
+
envelope, phase = process_spectrogram_with_hilbert(spec[ch_idx])
|
1475 |
+
envelope_list.append(envelope)
|
1476 |
+
phase_list.append(phase)
|
1477 |
+
|
1478 |
+
batch["envelope"] = torch.stack(envelope_list)
|
1479 |
+
batch["phase"] = torch.stack(phase_list)
|
1480 |
+
|
1481 |
+
wav_1d = wav.unsqueeze(0)
|
1482 |
+
|
1483 |
+
if waveforms:
|
1484 |
+
batch["waveform"] = wav_1d
|
1485 |
+
|
1486 |
+
if pitch:
|
1487 |
+
wav_np = wav.numpy().astype(np.float64)
|
1488 |
+
f0, t = pw.dio(wav_np, sampling_rate,
|
1489 |
+
frame_period=hop_length/sampling_rate*1000)
|
1490 |
+
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
|
1491 |
+
f0 = torch.from_numpy(f0).float()
|
1492 |
+
batch["pitch"] = f0.unsqueeze(0)
|
1493 |
+
|
1494 |
+
if frequency:
|
1495 |
+
wav_np = wav.numpy().astype(np.float64)
|
1496 |
+
f0, t = pw.dio(wav_np, sampling_rate, frame_period=hop_length/sampling_rate*1000)
|
1497 |
+
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
|
1498 |
+
f0 = torch.from_numpy(f0).float()
|
1499 |
+
batch["f0"] = f0
|
1500 |
+
|
1501 |
+
if spectrogram and waveforms and pitch:
|
1502 |
+
spec_mean = batch["spectrogram"].mean()
|
1503 |
+
spec_std = batch["spectrogram"].std() + 1e-6
|
1504 |
+
batch["spectrogram"] = (batch["spectrogram"] - spec_mean) / spec_std
|
1505 |
+
|
1506 |
+
wav_mean = batch["waveform"].mean()
|
1507 |
+
wav_std = batch["waveform"].std() + 1e-6
|
1508 |
+
batch["waveform"] = (batch["waveform"] - wav_mean) / wav_std
|
1509 |
+
|
1510 |
+
if batch["pitch"].max() > 1.0:
|
1511 |
+
pitch_min = 50.0
|
1512 |
+
pitch_max = 500.0
|
1513 |
+
batch["pitch"] = (batch["pitch"] - pitch_min) / (pitch_max - pitch_min)
|
1514 |
+
|
1515 |
+
batch["label"] = tokenizer.encode(batch["transcription"], add_special_tokens=False)
|
1516 |
+
return batch
|
1517 |
+
|
1518 |
+
def compute_metrics(eval_pred, compute_result: bool = True,
|
1519 |
+
print_pred: bool = False, num_samples: int = 0, tokenizer=None, pitch=None, model=None):
|
1520 |
+
|
1521 |
+
pred_logits = eval_pred.predictions
|
1522 |
+
label_ids = eval_pred.label_ids
|
1523 |
+
|
1524 |
+
if hasattr(pred_logits, "cpu"):
|
1525 |
+
pred_logits = pred_logits.cpu()
|
1526 |
+
if hasattr(label_ids, "cpu"):
|
1527 |
+
label_ids = label_ids.cpu()
|
1528 |
+
if isinstance(pred_logits, tuple):
|
1529 |
+
pred_ids = pred_logits[0]
|
1530 |
+
else:
|
1531 |
+
pred_ids = pred_logits
|
1532 |
+
if hasattr(pred_ids, "ndim") and pred_ids.ndim == 3:
|
1533 |
+
if not isinstance(pred_ids, torch.Tensor):
|
1534 |
+
pred_ids = torch.tensor(pred_ids)
|
1535 |
+
pred_ids = pred_ids.argmax(dim=-1)
|
1536 |
+
pred_ids = pred_ids.tolist()
|
1537 |
+
|
1538 |
+
if hasattr(label_ids, "tolist"):
|
1539 |
+
label_ids = label_ids.tolist()
|
1540 |
+
|
1541 |
+
label_ids = [[0 if token == -100 else token for token in seq] for seq in label_ids]
|
1542 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
|
1543 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
|
1544 |
+
|
1545 |
+
if print_pred:
|
1546 |
+
for i in range(min(num_samples, len(pred_str))):
|
1547 |
+
print(f"Preds: {pred_str[i]}")
|
1548 |
+
print(f"Label: {label_str[i]}")
|
1549 |
+
print(f"preds: {pred_ids[i]}")
|
1550 |
+
print(f"label: {label_ids[i]}")
|
1551 |
+
print("--------------------------------")
|
1552 |
+
|
1553 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
1554 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
1555 |
+
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1556 |
+
|
1557 |
+
if model is None:
|
1558 |
+
global global_model
|
1559 |
+
if 'global_model' in globals():
|
1560 |
+
model = global_model
|
1561 |
+
|
1562 |
+
if model is not None:
|
1563 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
|
1564 |
+
if trainable_params > 0:
|
1565 |
+
efficiency_score = (100 - wer) / trainable_params
|
1566 |
+
else:
|
1567 |
+
print("Warning: Zero trainable parameters detected")
|
1568 |
+
efficiency_score = 0.0
|
1569 |
+
else:
|
1570 |
+
print("Warning: Model not available for parameter counting")
|
1571 |
+
trainable_params = 0.0
|
1572 |
+
efficiency_score = 0.0
|
1573 |
+
|
1574 |
+
if hasattr(wer, "item"):
|
1575 |
+
wer = wer.item()
|
1576 |
+
|
1577 |
+
metrics = {
|
1578 |
+
"wer": float(wer),
|
1579 |
+
"trainable_params_M": float(trainable_params),
|
1580 |
+
"efficiency_score": float(efficiency_score),
|
1581 |
+
}
|
1582 |
+
|
1583 |
+
return metrics
|
1584 |
+
|
1585 |
+
logger = logging.getLogger(__name__)
|
1586 |
+
|
1587 |
+
def create_model(param: Dimensions) -> Echo:
|
1588 |
+
model = Echo(param).to('cuda')
|
1589 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
1590 |
+
total_params = sum(p.numel() for p in model.parameters())
|
1591 |
+
logger.info(f"Trainable parameters: {trainable_params:,}")
|
1592 |
+
logger.info(f"Total parameters: {total_params:,}")
|
1593 |
+
print(f"Trainable parameters: {trainable_params:,}")
|
1594 |
+
print(f"Total parameters: {total_params:,}")
|
1595 |
+
|
1596 |
+
return model
|
1597 |
+
|
1598 |
+
def setup_tokenizer(token: str, local_tokenizer_path: str = "D:/newmodel/model/tokenn/"):
|
1599 |
+
from tokenizers import Tokenizer
|
1600 |
+
tokenizer = Tokenizer.from_file(f"{local_tokenizer_path}/tokenizer.json")
|
1601 |
+
orig_encode = tokenizer.encode
|
1602 |
+
def enc(text, add_special_tokens=True):
|
1603 |
+
ids = orig_encode(text).ids
|
1604 |
+
if not add_special_tokens:
|
1605 |
+
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
|
1606 |
+
ids = [id for id in ids if id not in sp_ids]
|
1607 |
+
return ids
|
1608 |
+
def bdec(ids_list, skip_special_tokens=True):
|
1609 |
+
results = []
|
1610 |
+
for ids in ids_list:
|
1611 |
+
if skip_special_tokens:
|
1612 |
+
ids = [id for id in ids if id not in [0, 1, 2]]
|
1613 |
+
results.append(tokenizer.decode(ids))
|
1614 |
+
return results
|
1615 |
+
def save_pretrained(save_dir):
|
1616 |
+
os.makedirs(save_dir, exist_ok=True)
|
1617 |
+
tokenizer.save(f"{save_dir}/tokenizer.json")
|
1618 |
+
tokenizer.encode = enc
|
1619 |
+
tokenizer.batch_decode = bdec
|
1620 |
+
tokenizer.save_pretrained = save_pretrained
|
1621 |
+
tokenizer.pad_token_id = 0
|
1622 |
+
tokenizer.bos_token_id = 1
|
1623 |
+
tokenizer.eos_token_id = 2
|
1624 |
+
return tokenizer
|
1625 |
+
|
1626 |
+
def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_config: Optional[Dict] = None) -> Tuple[any, any]:
|
1627 |
+
if dataset_config is None:
|
1628 |
+
dataset_config = {
|
1629 |
+
"spectrogram": True,
|
1630 |
+
"waveforms": True,
|
1631 |
+
"pitch": True,
|
1632 |
+
"frequency": True,
|
1633 |
+
"downsamples": True,
|
1634 |
+
"hop_length": 128,
|
1635 |
+
"fmin": 50,
|
1636 |
+
"fmax": 2000,
|
1637 |
+
"n_mels": 128,
|
1638 |
+
"n_fft": 1024,
|
1639 |
+
"sampling_rate": 16000,
|
1640 |
+
}
|
1641 |
+
|
1642 |
+
dataset = load_dataset(
|
1643 |
+
"google/fleurs",
|
1644 |
+
"en_us",
|
1645 |
+
token=token,
|
1646 |
+
trust_remote_code=True,
|
1647 |
+
streaming=False)
|
1648 |
+
|
1649 |
+
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
|
1650 |
+
|
1651 |
+
if sanity_check:
|
1652 |
+
dataset = dataset["test"].take(10)
|
1653 |
+
dataset = dataset.select_columns(["audio", "transcription"])
|
1654 |
+
logger.info(f"Sanity dataset size: {dataset.num_rows}")
|
1655 |
+
print(f"Sanity dataset size: {dataset.num_rows}")
|
1656 |
+
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1657 |
+
|
1658 |
+
dataset = dataset.map(
|
1659 |
+
function=prepare_fn,
|
1660 |
+
remove_columns=["audio", "transcription"]
|
1661 |
+
).with_format(type="torch")
|
1662 |
+
train_dataset = dataset
|
1663 |
+
test_dataset = dataset
|
1664 |
+
else:
|
1665 |
+
def filter_func(x):
|
1666 |
+
return (0 < len(x["transcription"]) < 512 and
|
1667 |
+
len(x["audio"]["array"]) > 0 and
|
1668 |
+
len(x["audio"]["array"]) < 1500 * 160)
|
1669 |
+
|
1670 |
+
dataset = dataset.filter(filter_func).shuffle(seed=4)
|
1671 |
+
logger.info(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
|
1672 |
+
print(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
|
1673 |
+
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1674 |
+
columns_to_remove = list(next(iter(dataset.values())).features)
|
1675 |
+
train_dataset = dataset["train"]
|
1676 |
+
test_dataset = dataset["test"].take(50)
|
1677 |
+
logger.info(f"Train dataset size: {train_dataset.num_rows}, Test dataset size: {test_dataset.num_rows}")
|
1678 |
+
|
1679 |
+
train_dataset = train_dataset.map(
|
1680 |
+
function=prepare_fn,
|
1681 |
+
remove_columns=columns_to_remove
|
1682 |
+
).with_format(type="torch")
|
1683 |
+
|
1684 |
+
test_dataset = test_dataset.map(
|
1685 |
+
function=prepare_fn,
|
1686 |
+
remove_columns=columns_to_remove
|
1687 |
+
).with_format(type="torch")
|
1688 |
+
|
1689 |
+
return train_dataset, test_dataset
|
1690 |
+
|
1691 |
+
def get_training_args(
|
1692 |
+
log_dir: str,
|
1693 |
+
batch_eval_metrics: bool = False,
|
1694 |
+
max_steps: int = 10,
|
1695 |
+
save_steps: int = 1000,
|
1696 |
+
eval_steps: int = 1,
|
1697 |
+
warmup_steps: int = 0,
|
1698 |
+
num_train_epochs: int = 1,
|
1699 |
+
logging_steps: int = 1,
|
1700 |
+
eval_on_start: bool = False,
|
1701 |
+
learning_rate: float = 1e-4,
|
1702 |
+
weight_decay: float = 0.01,
|
1703 |
+
max_grad_norm: float = 1.0,
|
1704 |
+
) -> Seq2SeqTrainingArguments:
|
1705 |
+
|
1706 |
+
return Seq2SeqTrainingArguments(
|
1707 |
+
output_dir=log_dir,
|
1708 |
+
per_device_train_batch_size=1,
|
1709 |
+
per_device_eval_batch_size=1,
|
1710 |
+
gradient_accumulation_steps=1,
|
1711 |
+
eval_accumulation_steps=1,
|
1712 |
+
eval_strategy="steps",
|
1713 |
+
save_strategy="steps",
|
1714 |
+
max_steps=max_steps,
|
1715 |
+
save_steps=save_steps,
|
1716 |
+
eval_steps=eval_steps,
|
1717 |
+
warmup_steps=warmup_steps,
|
1718 |
+
num_train_epochs=num_train_epochs,
|
1719 |
+
logging_steps=logging_steps,
|
1720 |
+
logging_dir=log_dir,
|
1721 |
+
logging_strategy="steps",
|
1722 |
+
report_to=["tensorboard"],
|
1723 |
+
push_to_hub=False,
|
1724 |
+
disable_tqdm=False,
|
1725 |
+
save_total_limit=1,
|
1726 |
+
label_names=["labels"],
|
1727 |
+
optim="adamw_torch",
|
1728 |
+
lr_scheduler_type="cosine",
|
1729 |
+
learning_rate=learning_rate,
|
1730 |
+
weight_decay=weight_decay,
|
1731 |
+
save_safetensors=False,
|
1732 |
+
eval_on_start=eval_on_start,
|
1733 |
+
batch_eval_metrics=batch_eval_metrics,
|
1734 |
+
max_grad_norm=max_grad_norm,
|
1735 |
+
)
|
1736 |
+
|
1737 |
+
def main():
|
1738 |
+
|
1739 |
+
token = ""
|
1740 |
+
log_dir = os.path.join('./output/logs', datetime.now().strftime(format='%m-%d_%H_%M_%S'))
|
1741 |
+
os.makedirs(name=log_dir, exist_ok=True)
|
1742 |
+
tokenizer = setup_tokenizer(token)
|
1743 |
+
|
1744 |
+
def sanity(sanity: bool):
|
1745 |
+
|
1746 |
+
if sanity:
|
1747 |
+
training_args = get_training_args(
|
1748 |
+
log_dir,
|
1749 |
+
batch_eval_metrics = False,
|
1750 |
+
max_steps = 10,
|
1751 |
+
save_steps = 0,
|
1752 |
+
eval_steps = 1,
|
1753 |
+
warmup_steps = 0,
|
1754 |
+
logging_steps = 1,
|
1755 |
+
eval_on_start = False,
|
1756 |
+
learning_rate = 5e-6,
|
1757 |
+
weight_decay = 0.01,
|
1758 |
+
)
|
1759 |
+
else:
|
1760 |
+
training_args = get_training_args(
|
1761 |
+
log_dir,
|
1762 |
+
batch_eval_metrics = False,
|
1763 |
+
max_steps = 1000,
|
1764 |
+
save_steps = 1005,
|
1765 |
+
eval_steps = 100,
|
1766 |
+
warmup_steps = 100,
|
1767 |
+
logging_steps = 10,
|
1768 |
+
eval_on_start = False,
|
1769 |
+
learning_rate = 2.5e-4,
|
1770 |
+
weight_decay = 0.01,
|
1771 |
+
)
|
1772 |
+
|
1773 |
+
return training_args
|
1774 |
+
|
1775 |
+
param = Dimensions(
|
1776 |
+
mels=128,
|
1777 |
+
aud_ctx=1500,
|
1778 |
+
aud_head=4,
|
1779 |
+
aud_dims=512,
|
1780 |
+
aud_idx=4,
|
1781 |
+
vocab=40000,
|
1782 |
+
text_ctx=512,
|
1783 |
+
text_head=4,
|
1784 |
+
text_dims=512,
|
1785 |
+
text_idx=4,
|
1786 |
+
act="swish",
|
1787 |
+
debug={"rotary"},
|
1788 |
+
cross_attn=True,
|
1789 |
+
f0_rotary=False,
|
1790 |
+
features = ["spectrogram"]
|
1791 |
+
)
|
1792 |
+
|
1793 |
+
sanity_check = False
|
1794 |
+
training_args = sanity(sanity_check)
|
1795 |
+
dataset_config = {
|
1796 |
+
"spectrogram": True,
|
1797 |
+
"waveforms": False,
|
1798 |
+
"pitch": False,
|
1799 |
+
"downsamples": False,
|
1800 |
+
"frequency": False,
|
1801 |
+
"hilbert": False,
|
1802 |
+
"hop_length": 128,
|
1803 |
+
"fmin": 150,
|
1804 |
+
"fmax": 2000,
|
1805 |
+
"n_mels": 128,
|
1806 |
+
"n_fft": 1024,
|
1807 |
+
"sampling_rate": 16000,
|
1808 |
+
"pad_mode": "constant",
|
1809 |
+
"center": True,
|
1810 |
+
"power": 2.0,
|
1811 |
+
"window_fn": torch.hann_window,
|
1812 |
+
"mel_scale": "htk",
|
1813 |
+
"norm": None,
|
1814 |
+
"normalized": False}
|
1815 |
+
|
1816 |
+
model = create_model(param)
|
1817 |
+
|
1818 |
+
global global_model
|
1819 |
+
global_model = model
|
1820 |
+
|
1821 |
+
metrics_fn = partial(compute_metrics, print_pred=False, num_samples=5,
|
1822 |
+
tokenizer=tokenizer, model=model)
|
1823 |
+
|
1824 |
+
print(f"{'Sanity check' if sanity_check else 'Training'} mode")
|
1825 |
+
train_dataset, test_dataset = prepare_datasets(
|
1826 |
+
tokenizer=tokenizer,
|
1827 |
+
token=token,
|
1828 |
+
sanity_check=sanity_check,
|
1829 |
+
dataset_config=dataset_config)
|
1830 |
+
|
1831 |
+
trainer = Seq2SeqTrainer(
|
1832 |
+
args=training_args,
|
1833 |
+
model=model,
|
1834 |
+
train_dataset=train_dataset,
|
1835 |
+
eval_dataset=test_dataset,
|
1836 |
+
data_collator=DataCollator(tokenizer=tokenizer),
|
1837 |
+
compute_metrics=metrics_fn,
|
1838 |
+
)
|
1839 |
+
|
1840 |
+
model.init_weights()
|
1841 |
+
trainer.train()
|
1842 |
+
|
1843 |
+
if __name__ == "__main__":
|
1844 |
+
main()
|
1845 |
+
|