Update model_hf.py
Browse files- model_hf.py +217 -209
model_hf.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
import os
|
2 |
-
PATH = 'E:/hf'
|
3 |
-
os.environ['HF_HOME'] = PATH
|
4 |
-
os.environ['HF_DATASETS_CACHE'] = PATH
|
5 |
import pyworld as pw
|
6 |
import math
|
7 |
import warnings
|
@@ -25,7 +22,9 @@ from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
|
25 |
import transformers
|
26 |
import evaluate
|
27 |
from dataclasses import dataclass
|
28 |
-
import
|
|
|
|
|
29 |
torch.backends.cudnn.allow_tf32 = True
|
30 |
torch.backends.cuda.matmul.allow_tf32 = True
|
31 |
torch.set_float32_matmul_precision('high')
|
@@ -36,6 +35,25 @@ dtype = torch.float32
|
|
36 |
|
37 |
warnings.filterwarnings("ignore")
|
38 |
logging.basicConfig(level=logging.ERROR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
@dataclass
|
41 |
class Dimensions:
|
@@ -306,14 +324,12 @@ class rotary(nn.Module):
|
|
306 |
return f0.to(device=device, dtype=dtype)
|
307 |
|
308 |
def synth_f0(self, f0, ctx):
|
309 |
-
# f0 = self.f0proj(f0)
|
310 |
if f0.dim() == 1:
|
311 |
length = f0.shape[0]
|
312 |
if length == ctx:
|
313 |
return f0
|
314 |
frames = length / ctx
|
315 |
idx = torch.arange(ctx, device=f0.device)
|
316 |
-
# return torch.arange(1, ctx+1, device=f0.device, dtype=torch.float)
|
317 |
return f0[idx]
|
318 |
|
319 |
def align_f0(self, ctx, f0):
|
@@ -367,7 +383,6 @@ class rotary(nn.Module):
|
|
367 |
else:
|
368 |
theta = self.theta
|
369 |
freqs = self.theta_freqs(theta)
|
370 |
-
|
371 |
freqs = t[:, None] * freqs[None, :]
|
372 |
if self.radii and f0 is not None and layer == "encoder":
|
373 |
radius = f0.to(device, dtype)
|
@@ -377,7 +392,7 @@ class rotary(nn.Module):
|
|
377 |
idx = torch.arange(ctx, device=f0.device)
|
378 |
idx = (idx * F).long().clamp(0, L - 1)
|
379 |
radius = radius[idx]
|
380 |
-
|
381 |
radius = radius.unsqueeze(-1).expand(-1, freqs.shape[-1])
|
382 |
radius = torch.sigmoid(radius)
|
383 |
else:
|
@@ -445,7 +460,7 @@ class MultiheadA(nn.Module):
|
|
445 |
else:
|
446 |
self.rope = None
|
447 |
|
448 |
-
def
|
449 |
scale = (self.dims // self.head) ** -0.25
|
450 |
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
451 |
if rbf_ratio <= 0.0:
|
@@ -457,30 +472,27 @@ class MultiheadA(nn.Module):
|
|
457 |
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
|
458 |
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
|
459 |
|
460 |
-
def forward(self, x: Tensor, xa: Tensor = None, mask: Tensor = None, enc = None, layer = None, feature_type="audio") -> tuple:
|
|
|
461 |
x = x.to(device, dtype)
|
462 |
if xa is not None:
|
463 |
xa = xa.to(device, dtype)
|
464 |
-
|
465 |
-
batch, ctx, dims = x.shape
|
466 |
scale = (self.dims // self.head) ** -0.25
|
467 |
|
468 |
z = default(xa, x).to(device, dtype)
|
469 |
q = self.q(x)
|
470 |
k = self.k(z)
|
471 |
v = self.v(z)
|
472 |
-
qlen = q.shape[1]
|
473 |
-
klen = k.shape[1]
|
474 |
|
475 |
if self.rotary_emb:
|
476 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
477 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
478 |
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
479 |
-
|
480 |
-
|
481 |
|
482 |
-
q = self.rope.apply_rotary(q, (self.rope(
|
483 |
-
k = self.rope.apply_rotary(k, (self.rope(
|
484 |
else:
|
485 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
486 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
@@ -488,21 +500,21 @@ class MultiheadA(nn.Module):
|
|
488 |
batch, head, ctx, head_dim = q.shape
|
489 |
|
490 |
if self.rbf:
|
491 |
-
qk = self.
|
492 |
|
493 |
qk = (q * scale) @ (k * scale).transpose(-1, -2)
|
494 |
if self.rope.use_pbias:
|
495 |
f0 = enc.get("f0", None) if enc is not None else None
|
496 |
pbias = self.rope.use_pbias(f0)
|
497 |
if pbias is not None:
|
498 |
-
qk = qk + pbias[:,:,:
|
499 |
token_ids = k[:, :, :, 0]
|
500 |
zscale = torch.ones_like(token_ids)
|
501 |
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
502 |
zscale[token_ids.float() == self.pad_token] = fzero
|
503 |
|
504 |
if mask is not None:
|
505 |
-
mask = mask[:
|
506 |
qk = qk + mask.unsqueeze(0).unsqueeze(0) * zscale.unsqueeze(-2).expand(qk.shape)
|
507 |
qk = qk * zscale.unsqueeze(-2)
|
508 |
w = F.softmax(qk, dim=-1).to(q.dtype)
|
@@ -511,8 +523,129 @@ class MultiheadA(nn.Module):
|
|
511 |
if "multihead" in self.debug and self.counter % 100 == 0:
|
512 |
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape} - {qk.shape}, wv shape: {wv.shape}")
|
513 |
self.counter += 1
|
514 |
-
return self.o(wv), qk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
class t_gate(nn.Module):
|
517 |
def __init__(self, dims, num_types=4):
|
518 |
super().__init__()
|
@@ -567,7 +700,6 @@ class c_gate(nn.Module):
|
|
567 |
comb = torch.cat([s, w, p, e, ph], dim=-1)
|
568 |
return self.integ(comb)
|
569 |
|
570 |
-
|
571 |
class Residual(nn.Module):
|
572 |
_seen = set()
|
573 |
def __init__(self, ctx, dims, head, act, cross_attn=True, debug: List[str] = [],
|
@@ -667,7 +799,6 @@ class Residual(nn.Module):
|
|
667 |
self.counter += 1
|
668 |
return x
|
669 |
|
670 |
-
|
671 |
class FEncoder(nn.Module):
|
672 |
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1, use_rope=False, spec_shape=None):
|
673 |
super().__init__()
|
@@ -1030,7 +1161,6 @@ class Echo(nn.Module):
|
|
1030 |
phase: Optional[torch.Tensor]=None,
|
1031 |
) -> Dict[str, torch.Tensor]:
|
1032 |
|
1033 |
-
decoder_input_ids = input_ids
|
1034 |
encoder_inputs = {}
|
1035 |
if spectrogram is not None:
|
1036 |
encoder_inputs["spectrogram"] = spectrogram
|
@@ -1142,120 +1272,51 @@ class Echo(nn.Module):
|
|
1142 |
print("Counter reset to 0.")
|
1143 |
|
1144 |
metric = evaluate.load(path="wer")
|
1145 |
-
|
1146 |
@dataclass
|
1147 |
class DataCollator:
|
1148 |
tokenizer: Any
|
|
|
1149 |
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
batch = {}
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
1176 |
-
if
|
1177 |
-
|
1178 |
-
|
1179 |
-
|
1180 |
-
|
1181 |
-
|
1182 |
-
|
1183 |
-
|
1184 |
-
|
1185 |
-
|
1186 |
-
|
1187 |
-
|
1188 |
-
|
1189 |
-
all_labels = []
|
1190 |
-
|
1191 |
-
for label in labels_list:
|
1192 |
-
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
|
1193 |
-
decoder_input = [bos_token_id] + label_list
|
1194 |
-
label_eos = label_list + [pad_token_id]
|
1195 |
-
input_len = max_len + 1 - len(decoder_input)
|
1196 |
-
label_len = max_len + 1 - len(label_eos)
|
1197 |
-
padded_input = decoder_input + [pad_token_id] * input_len
|
1198 |
-
padded_labels = label_eos + [pad_token_id] * label_len
|
1199 |
-
all_ids.append(padded_input)
|
1200 |
-
all_labels.append(padded_labels)
|
1201 |
-
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
|
1202 |
-
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
|
1203 |
-
|
1204 |
-
if "pitch" in features[0] and features[0]["pitch"] is not None:
|
1205 |
-
pitch_list = [f["pitch"] for f in features]
|
1206 |
-
max_len_pitch = max(e.shape[-1] for e in pitch_list)
|
1207 |
-
pad_pitch = []
|
1208 |
-
for pitch in pitch_list:
|
1209 |
-
current_len = pitch.shape[-1]
|
1210 |
-
padding = max_len_pitch - current_len
|
1211 |
-
if padding > 0:
|
1212 |
-
pad_pitch_item = F.pad(pitch, (0, padding), mode='constant', value=pad_token_id)
|
1213 |
-
else:
|
1214 |
-
pad_pitch_item = pitch
|
1215 |
-
pad_pitch.append(pad_pitch_item)
|
1216 |
-
batch["pitch"] = torch.stack(pad_pitch)
|
1217 |
-
|
1218 |
-
if "f0" in features[0] and features[0]["f0"] is not None:
|
1219 |
-
f0_list = [f["f0"] for f in features]
|
1220 |
-
max_len_f0 = max(f.shape[-1] for f in f0_list)
|
1221 |
-
pad_f0 = []
|
1222 |
-
for f0 in f0_list:
|
1223 |
-
current_len = f0.shape[-1]
|
1224 |
-
padding = max_len_f0 - current_len
|
1225 |
-
if padding > 0:
|
1226 |
-
pad_f0_item = F.pad(f0, (0, padding), mode='constant', value=pad_token_id)
|
1227 |
-
else:
|
1228 |
-
pad_f0_item = f0
|
1229 |
-
pad_f0.append(pad_f0_item)
|
1230 |
-
batch["f0"] = torch.stack(pad_f0)
|
1231 |
-
|
1232 |
-
if "envelope" in features[0] and features[0]["envelope"] is not None:
|
1233 |
-
env_list = [f["envelope"] for f in features]
|
1234 |
-
max_len = max(f.shape[-1] for f in env_list)
|
1235 |
-
pad_env = []
|
1236 |
-
for feat in env_list:
|
1237 |
-
current_len = feat.shape[-1]
|
1238 |
-
padding = max_len - current_len
|
1239 |
-
if padding > 0:
|
1240 |
-
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
1241 |
-
else:
|
1242 |
-
pad_feat = feat
|
1243 |
-
pad_env.append(pad_feat)
|
1244 |
-
batch["envelope"] = torch.stack(pad_env)
|
1245 |
-
|
1246 |
-
if "phase" in features[0] and features[0]["phase"] is not None:
|
1247 |
-
ph_list = [f["phase"] for f in features]
|
1248 |
-
max_len = max(f.shape[-1] for f in ph_list)
|
1249 |
-
pad_ph = []
|
1250 |
-
for feat in ph_list:
|
1251 |
-
current_len = feat.shape[-1]
|
1252 |
-
padding = max_len - current_len
|
1253 |
-
if padding > 0:
|
1254 |
-
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
1255 |
-
else:
|
1256 |
-
pad_feat = feat
|
1257 |
-
pad_ph.append(pad_feat)
|
1258 |
-
batch["phase"] = torch.stack(pad_ph)
|
1259 |
return batch
|
1260 |
|
1261 |
def hilbert_transform(x):
|
@@ -1335,8 +1396,6 @@ def extract_features(batch, tokenizer, spectrogram, waveforms, pitch, frequency=
|
|
1335 |
pad_mode="constant", center=True, power=2.0, window_fn=torch.hann_window, mel_scale="htk",
|
1336 |
norm=None, normalized=False, downsamples=False, period=False, hilbert=False):
|
1337 |
|
1338 |
-
dtype = torch.float32
|
1339 |
-
device = torch.device("cuda:0")
|
1340 |
audio = batch["audio"]
|
1341 |
sampling_rate = audio["sampling_rate"]
|
1342 |
sr = audio["sampling_rate"]
|
@@ -1414,75 +1473,37 @@ def extract_features(batch, tokenizer, spectrogram, waveforms, pitch, frequency=
|
|
1414 |
batch["label"] = tokenizer.encode(batch["transcription"], add_special_tokens=False)
|
1415 |
return batch
|
1416 |
|
1417 |
-
def compute_metrics(
|
1418 |
-
print_pred: bool = False, num_samples: int = 0, tokenizer=None, model=None):
|
1419 |
|
1420 |
-
|
1421 |
-
label_ids =
|
1422 |
|
1423 |
-
if
|
1424 |
-
|
1425 |
else:
|
1426 |
-
|
1427 |
-
if hasattr(label_ids, "cpu"):
|
1428 |
-
label_ids = label_ids.cpu()
|
1429 |
-
else:
|
1430 |
-
label_ids = torch.tensor(label_ids).cpu()
|
1431 |
|
1432 |
-
if
|
1433 |
-
pred_ids = pred_logits[0]
|
1434 |
-
else:
|
1435 |
-
pred_ids = pred_logits
|
1436 |
-
if hasattr(pred_ids, "ndim") and pred_ids.ndim == 3:
|
1437 |
-
if not isinstance(pred_ids, torch.Tensor):
|
1438 |
-
pred_ids = torch.tensor(pred_ids)
|
1439 |
pred_ids = pred_ids.argmax(dim=-1)
|
1440 |
-
|
1441 |
-
|
1442 |
-
|
1443 |
-
label_ids = label_ids.tolist()
|
1444 |
-
|
1445 |
-
label_ids = [[0 if token == -100 else token for token in seq] for seq in label_ids]
|
1446 |
-
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
|
1447 |
-
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
|
1448 |
|
1449 |
if print_pred:
|
|
|
|
|
1450 |
for i in range(min(num_samples, len(pred_str))):
|
1451 |
print(f"Preds: {pred_str[i]}")
|
1452 |
print(f"Label: {label_str[i]}")
|
|
|
|
|
1453 |
print("--------------------------------")
|
1454 |
|
1455 |
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
1456 |
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
1457 |
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1458 |
|
1459 |
-
|
1460 |
-
global global_model
|
1461 |
-
if 'global_model' in globals():
|
1462 |
-
model = global_model
|
1463 |
-
|
1464 |
-
if model is not None:
|
1465 |
-
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
|
1466 |
-
if trainable_params > 0:
|
1467 |
-
efficiency_score = (100 - wer) / trainable_params
|
1468 |
-
else:
|
1469 |
-
print("Warning: Zero trainable parameters detected")
|
1470 |
-
efficiency_score = 0.0
|
1471 |
-
else:
|
1472 |
-
print("Warning: Model not available for parameter counting")
|
1473 |
-
trainable_params = 0.0
|
1474 |
-
efficiency_score = 0.0
|
1475 |
-
|
1476 |
-
if hasattr(wer, "item"):
|
1477 |
-
wer = wer.item()
|
1478 |
-
|
1479 |
-
metrics = {
|
1480 |
-
"wer": float(wer),
|
1481 |
-
"trainable_params_M": float(trainable_params),
|
1482 |
-
"efficiency_score": float(efficiency_score),
|
1483 |
-
}
|
1484 |
-
|
1485 |
-
return metrics
|
1486 |
|
1487 |
logger = logging.getLogger(__name__)
|
1488 |
|
@@ -1548,18 +1569,6 @@ def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_
|
|
1548 |
trust_remote_code=True,
|
1549 |
streaming=False)
|
1550 |
|
1551 |
-
# cache_dir = "./processed_datasets"
|
1552 |
-
# os.makedirs(cache_dir, exist_ok=True)
|
1553 |
-
# cache_file_train = os.path.join(cache_dir, "train.arrow")
|
1554 |
-
# cache_file_test = os.path.join(cache_dir, "test.arrow")
|
1555 |
-
|
1556 |
-
# if os.path.exists(cache_file_train) and os.path.exists(cache_file_test):
|
1557 |
-
# from datasets import Dataset
|
1558 |
-
# train_dataset = Dataset.load_from_disk(cache_file_train)
|
1559 |
-
# test_dataset = Dataset.load_from_disk(cache_file_test)
|
1560 |
-
# return train_dataset, test_dataset
|
1561 |
-
|
1562 |
-
|
1563 |
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
|
1564 |
|
1565 |
if sanity_check:
|
@@ -1577,9 +1586,8 @@ def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_
|
|
1577 |
|
1578 |
dataset = dataset.filter(filter_func)
|
1579 |
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1580 |
-
|
1581 |
-
|
1582 |
-
test_dataset = dataset["test"].take(100)
|
1583 |
|
1584 |
train_dataset = train_dataset.map(
|
1585 |
function=prepare_fn,
|
@@ -1611,7 +1619,7 @@ def get_training_args(
|
|
1611 |
return Seq2SeqTrainingArguments(
|
1612 |
output_dir=log_dir,
|
1613 |
per_device_train_batch_size=1,
|
1614 |
-
per_device_eval_batch_size=
|
1615 |
gradient_accumulation_steps=1,
|
1616 |
eval_accumulation_steps=4,
|
1617 |
eval_strategy="steps",
|
@@ -1669,11 +1677,11 @@ def main():
|
|
1669 |
training_args = get_training_args(
|
1670 |
log_dir,
|
1671 |
batch_eval_metrics = False,
|
1672 |
-
max_steps =
|
1673 |
save_steps = 1005,
|
1674 |
-
eval_steps =
|
1675 |
-
warmup_steps =
|
1676 |
-
logging_steps =
|
1677 |
eval_on_start = False,
|
1678 |
learning_rate = 2.5e-4,
|
1679 |
weight_decay = 0.01,
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import pyworld as pw
|
3 |
import math
|
4 |
import warnings
|
|
|
22 |
import transformers
|
23 |
import evaluate
|
24 |
from dataclasses import dataclass
|
25 |
+
import pretty_errors
|
26 |
+
from rich.traceback import install
|
27 |
+
|
28 |
torch.backends.cudnn.allow_tf32 = True
|
29 |
torch.backends.cuda.matmul.allow_tf32 = True
|
30 |
torch.set_float32_matmul_precision('high')
|
|
|
35 |
|
36 |
warnings.filterwarnings("ignore")
|
37 |
logging.basicConfig(level=logging.ERROR)
|
38 |
+
install(show_locals=True)
|
39 |
+
|
40 |
+
pretty_errors.configure(
|
41 |
+
separator_character = '*',
|
42 |
+
filename_display = pretty_errors.FILENAME_EXTENDED,
|
43 |
+
line_number_first = True,
|
44 |
+
display_link = True,
|
45 |
+
lines_before = 5,
|
46 |
+
lines_after = 2,
|
47 |
+
line_color = pretty_errors.RED + '> ' + pretty_errors.default_config.line_color,
|
48 |
+
code_color = ' ' + pretty_errors.default_config.line_color,
|
49 |
+
)
|
50 |
+
|
51 |
+
PATH = 'E:/hf'
|
52 |
+
os.environ['HF_HOME'] = PATH
|
53 |
+
os.environ['HF_DATASETS_CACHE'] = PATH
|
54 |
+
os.environ['TORCH_HOME'] = PATH
|
55 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
56 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
57 |
|
58 |
@dataclass
|
59 |
class Dimensions:
|
|
|
324 |
return f0.to(device=device, dtype=dtype)
|
325 |
|
326 |
def synth_f0(self, f0, ctx):
|
|
|
327 |
if f0.dim() == 1:
|
328 |
length = f0.shape[0]
|
329 |
if length == ctx:
|
330 |
return f0
|
331 |
frames = length / ctx
|
332 |
idx = torch.arange(ctx, device=f0.device)
|
|
|
333 |
return f0[idx]
|
334 |
|
335 |
def align_f0(self, ctx, f0):
|
|
|
383 |
else:
|
384 |
theta = self.theta
|
385 |
freqs = self.theta_freqs(theta)
|
|
|
386 |
freqs = t[:, None] * freqs[None, :]
|
387 |
if self.radii and f0 is not None and layer == "encoder":
|
388 |
radius = f0.to(device, dtype)
|
|
|
392 |
idx = torch.arange(ctx, device=f0.device)
|
393 |
idx = (idx * F).long().clamp(0, L - 1)
|
394 |
radius = radius[idx]
|
395 |
+
|
396 |
radius = radius.unsqueeze(-1).expand(-1, freqs.shape[-1])
|
397 |
radius = torch.sigmoid(radius)
|
398 |
else:
|
|
|
460 |
else:
|
461 |
self.rope = None
|
462 |
|
463 |
+
def rbf_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
464 |
scale = (self.dims // self.head) ** -0.25
|
465 |
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
466 |
if rbf_ratio <= 0.0:
|
|
|
472 |
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
|
473 |
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
|
474 |
|
475 |
+
def forward(self, x: Tensor, xa: Tensor = None, mask: Tensor = None, enc = None, layer = None, feature_type="audio", need_weights=True) -> tuple:
|
476 |
+
|
477 |
x = x.to(device, dtype)
|
478 |
if xa is not None:
|
479 |
xa = xa.to(device, dtype)
|
|
|
|
|
480 |
scale = (self.dims // self.head) ** -0.25
|
481 |
|
482 |
z = default(xa, x).to(device, dtype)
|
483 |
q = self.q(x)
|
484 |
k = self.k(z)
|
485 |
v = self.v(z)
|
|
|
|
|
486 |
|
487 |
if self.rotary_emb:
|
488 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
489 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
490 |
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
491 |
+
q2 = q.shape[2]
|
492 |
+
k2 = k.shape[2]
|
493 |
|
494 |
+
q = self.rope.apply_rotary(q, (self.rope(q2, enc=enc, layer=layer)))
|
495 |
+
k = self.rope.apply_rotary(k, (self.rope(k2, enc=enc, layer=layer)))
|
496 |
else:
|
497 |
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
498 |
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
|
|
500 |
batch, head, ctx, head_dim = q.shape
|
501 |
|
502 |
if self.rbf:
|
503 |
+
qk = self.rbf_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
|
504 |
|
505 |
qk = (q * scale) @ (k * scale).transpose(-1, -2)
|
506 |
if self.rope.use_pbias:
|
507 |
f0 = enc.get("f0", None) if enc is not None else None
|
508 |
pbias = self.rope.use_pbias(f0)
|
509 |
if pbias is not None:
|
510 |
+
qk = qk + pbias[:,:,:q2,:q2]
|
511 |
token_ids = k[:, :, :, 0]
|
512 |
zscale = torch.ones_like(token_ids)
|
513 |
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
514 |
zscale[token_ids.float() == self.pad_token] = fzero
|
515 |
|
516 |
if mask is not None:
|
517 |
+
mask = mask[:q2, :q2]
|
518 |
qk = qk + mask.unsqueeze(0).unsqueeze(0) * zscale.unsqueeze(-2).expand(qk.shape)
|
519 |
qk = qk * zscale.unsqueeze(-2)
|
520 |
w = F.softmax(qk, dim=-1).to(q.dtype)
|
|
|
523 |
if "multihead" in self.debug and self.counter % 100 == 0:
|
524 |
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape} - {qk.shape}, wv shape: {wv.shape}")
|
525 |
self.counter += 1
|
526 |
+
return self.o(wv), qk
|
527 |
+
|
528 |
+
class SpanPredictor(nn.Module):
|
529 |
+
def __init__(self, dims):
|
530 |
+
super().__init__()
|
531 |
+
self.linear = nn.Linear(in_features=dims, out_features=1)
|
532 |
+
|
533 |
+
def forward(self, global_out):
|
534 |
+
scale = torch.sigmoid(self.linear(global_out))
|
535 |
+
return scale
|
536 |
+
|
537 |
+
class FocusA(nn.Module):
|
538 |
+
def __init__(self, base: int, dims: int, head: int, max_dist: int, sharpen: bool,
|
539 |
+
win_size: int = 32, max_span: int = 32, slid_win: int = 32,
|
540 |
+
temp_scale: float = 0.01, num_iterations: int = 3):
|
541 |
+
|
542 |
+
super().__init__()
|
543 |
+
self.base = base
|
544 |
+
self.dims = dims
|
545 |
+
self.head = head
|
546 |
+
self.max_dist = max_dist
|
547 |
+
self.sharpen = sharpen
|
548 |
+
self.win_size = win_size
|
549 |
+
self.max_span = max_span
|
550 |
+
self.slid_win = slid_win
|
551 |
+
self.temp_scale = temp_scale
|
552 |
+
self.num_iterations = num_iterations
|
553 |
+
self.span_predictor = SpanPredictor(dims=dims)
|
554 |
+
self.span_scale_param = nn.Parameter(torch.tensor(1.0))
|
555 |
+
|
556 |
+
self.attn_local = nn.MultiheadAttention(embed_dim=dims, num_heads=head, batch_first=True)
|
557 |
+
self.attn_global = nn.MultiheadAttention(embed_dim=dims, num_heads=head, batch_first=True)
|
558 |
+
|
559 |
+
self.ln_local = nn.LayerNorm(normalized_shape=dims)
|
560 |
+
self.ln_global = nn.LayerNorm(normalized_shape=dims)
|
561 |
+
self.projection = nn.Linear(in_features=2 * dims, out_features=dims)
|
562 |
+
|
563 |
+
def _focus(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, span_scale: torch.Tensor) -> torch.Tensor:
|
564 |
+
|
565 |
+
max_iterations = 1
|
566 |
+
iteration = 0
|
567 |
+
prev_attn_out = torch.zeros_like(query)
|
568 |
+
base_threshold = 1e-4
|
569 |
+
scaling_factor = 0.1
|
570 |
+
|
571 |
+
while iteration < max_iterations:
|
572 |
+
span_len = int(self.max_span * span_scale.mean().item())
|
573 |
+
span_len = min(span_len, query.size(1), key.size(1), value.size(1))
|
574 |
+
eff_span = min(span_len, self.max_dist)
|
575 |
+
|
576 |
+
q_span = query[:, :eff_span, :]
|
577 |
+
k_span = key[:, :eff_span, :]
|
578 |
+
v_span = value[:, :eff_span, :]
|
579 |
+
|
580 |
+
batch, ctx, dims = q_span.size()
|
581 |
+
scale_factor = (dims // self.head) ** -0.25
|
582 |
+
|
583 |
+
q = q_span.view(batch, ctx, self.head, -1).permute(0, 2, 1, 3)
|
584 |
+
k = k_span.view(batch, ctx, self.head, -1).permute(0, 2, 1, 3)
|
585 |
+
v = v_span.view(batch, ctx, self.head, -1).permute(0, 2, 1, 3)
|
586 |
+
|
587 |
+
if self.sharpen:
|
588 |
+
temperature = 1.0 + self.temp_scale * (1.0 - span_scale.mean().item())
|
589 |
+
else:
|
590 |
+
temperature = 0.5 + self.temp_scale * span_scale.mean().item()
|
591 |
+
|
592 |
+
attn_scores = torch.matmul(q, k.transpose(-2, -1))
|
593 |
+
attn_weights = torch.softmax((attn_scores / temperature) * scale_factor, dim=-1)
|
594 |
+
attn_out = torch.matmul(attn_weights, v)
|
595 |
+
|
596 |
+
attn_out = attn_out.permute(0, 2, 1, 3).contiguous().view(batch, ctx, -1)
|
597 |
+
|
598 |
+
diff = torch.abs(attn_out - prev_attn_out).mean()
|
599 |
+
dynamic_threshold = base_threshold + scaling_factor * diff
|
600 |
+
|
601 |
+
if diff < dynamic_threshold:
|
602 |
+
break
|
603 |
+
|
604 |
+
prev_attn_out = attn_out
|
605 |
+
query = query + attn_out
|
606 |
+
iteration += 1
|
607 |
+
|
608 |
+
return attn_out, attn_weights
|
609 |
+
|
610 |
+
def _window(self, x: torch.Tensor, win_size: int, span_len: int, span_scale: torch.Tensor) -> torch.Tensor:
|
611 |
+
|
612 |
+
batch, ctx, dims = x.size()
|
613 |
+
num_windows = (ctx + win_size - 1) // win_size
|
614 |
+
|
615 |
+
output = torch.zeros_like(x, device=x.device)
|
616 |
+
|
617 |
+
for i in range(num_windows):
|
618 |
+
start_idx = i * win_size
|
619 |
+
end_idx = min((i + 1) * win_size, ctx)
|
620 |
+
query = x[:, start_idx:end_idx, :]
|
621 |
+
|
622 |
+
key_start = max(0, start_idx - span_len + win_size)
|
623 |
+
key_end = min(start_idx + span_len, ctx)
|
624 |
+
key = x[:, key_start:key_end, :]
|
625 |
+
value = x[:, key_start:key_end, :]
|
626 |
+
|
627 |
+
attn_out = self._focus(query, key, value, span_scale)
|
628 |
+
output[:, start_idx:end_idx, :] = attn_out
|
629 |
|
630 |
+
return output
|
631 |
+
|
632 |
+
def forward(self, x, xa=None, mask=None, kv_cache=None) -> torch.Tensor:
|
633 |
+
span_scale = self.span_predictor(x)
|
634 |
+
span_scale = torch.sigmoid(span_scale)
|
635 |
+
|
636 |
+
local_attn_out = self.attn_local(x, x, x)
|
637 |
+
local_attn_out = self.ln_local(local_attn_out)
|
638 |
+
|
639 |
+
global_attn_out = self.attn_global(x, x, x)
|
640 |
+
global_attn_out = self.ln_global(global_attn_out)
|
641 |
+
|
642 |
+
attn_out = torch.cat((local_attn_out, global_attn_out), dim=-1)
|
643 |
+
attn_out = self.projection(attn_out)
|
644 |
+
|
645 |
+
windowed_attn_out = self._window(attn_out, self.win_size, self.max_span, span_scale)
|
646 |
+
focused_attn_out = self._focus(windowed_attn_out, windowed_attn_out, windowed_attn_out, span_scale)
|
647 |
+
return focused_attn_out
|
648 |
+
|
649 |
class t_gate(nn.Module):
|
650 |
def __init__(self, dims, num_types=4):
|
651 |
super().__init__()
|
|
|
700 |
comb = torch.cat([s, w, p, e, ph], dim=-1)
|
701 |
return self.integ(comb)
|
702 |
|
|
|
703 |
class Residual(nn.Module):
|
704 |
_seen = set()
|
705 |
def __init__(self, ctx, dims, head, act, cross_attn=True, debug: List[str] = [],
|
|
|
799 |
self.counter += 1
|
800 |
return x
|
801 |
|
|
|
802 |
class FEncoder(nn.Module):
|
803 |
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1, use_rope=False, spec_shape=None):
|
804 |
super().__init__()
|
|
|
1161 |
phase: Optional[torch.Tensor]=None,
|
1162 |
) -> Dict[str, torch.Tensor]:
|
1163 |
|
|
|
1164 |
encoder_inputs = {}
|
1165 |
if spectrogram is not None:
|
1166 |
encoder_inputs["spectrogram"] = spectrogram
|
|
|
1272 |
print("Counter reset to 0.")
|
1273 |
|
1274 |
metric = evaluate.load(path="wer")
|
1275 |
+
|
1276 |
@dataclass
|
1277 |
class DataCollator:
|
1278 |
tokenizer: Any
|
1279 |
+
|
1280 |
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
|
1281 |
+
all_keys = set()
|
1282 |
+
for f in features:
|
1283 |
+
all_keys.update(f.keys())
|
1284 |
batch = {}
|
1285 |
+
pad_token_id = getattr(self.tokenizer, 'pad_token_id', 0)
|
1286 |
+
bos_token_id = getattr(self.tokenizer, 'bos_token_id', 1)
|
1287 |
+
eos_token_id = getattr(self.tokenizer, 'eos_token_id', 2)
|
1288 |
+
|
1289 |
+
for key in all_keys:
|
1290 |
+
if key == "label":
|
1291 |
+
labels_list = [f["label"] for f in features]
|
1292 |
+
max_len = max(len(l) for l in labels_list)
|
1293 |
+
all_ids, all_labels = [], []
|
1294 |
+
for label in labels_list:
|
1295 |
+
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
|
1296 |
+
decoder_input = [bos_token_id] + label_list
|
1297 |
+
label_eos = label_list + [eos_token_id]
|
1298 |
+
input_len = max_len + 1 - len(decoder_input)
|
1299 |
+
label_len = max_len + 1 - len(label_eos)
|
1300 |
+
padded_input = decoder_input + [pad_token_id] * input_len
|
1301 |
+
padded_labels = label_eos + [pad_token_id] * label_len
|
1302 |
+
all_ids.append(padded_input)
|
1303 |
+
all_labels.append(padded_labels)
|
1304 |
+
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
|
1305 |
+
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
|
1306 |
+
elif key in ["spectrogram", "waveform", "pitch", "f0", "env", "phase"]:
|
1307 |
+
items = [f[key] for f in features if key in f]
|
1308 |
+
max_len = max(item.shape[-1] for item in items)
|
1309 |
+
padded = []
|
1310 |
+
for item in items:
|
1311 |
+
pad_width = max_len - item.shape[-1]
|
1312 |
+
if pad_width > 0:
|
1313 |
+
pad_item = F.pad(item, (0, pad_width), mode='constant', value=pad_token_id)
|
1314 |
+
else:
|
1315 |
+
pad_item = item
|
1316 |
+
padded.append(pad_item)
|
1317 |
+
batch[key] = torch.stack(padded)
|
1318 |
+
if key == "spectrogram":
|
1319 |
+
batch["spectrogram"] = batch[key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1320 |
return batch
|
1321 |
|
1322 |
def hilbert_transform(x):
|
|
|
1396 |
pad_mode="constant", center=True, power=2.0, window_fn=torch.hann_window, mel_scale="htk",
|
1397 |
norm=None, normalized=False, downsamples=False, period=False, hilbert=False):
|
1398 |
|
|
|
|
|
1399 |
audio = batch["audio"]
|
1400 |
sampling_rate = audio["sampling_rate"]
|
1401 |
sr = audio["sampling_rate"]
|
|
|
1473 |
batch["label"] = tokenizer.encode(batch["transcription"], add_special_tokens=False)
|
1474 |
return batch
|
1475 |
|
1476 |
+
def compute_metrics(pred, compute_result: bool = True, print_pred: bool = False, num_samples: int = 0, tokenizer = None, model = None):
|
|
|
1477 |
|
1478 |
+
pred_ids = pred.predictions
|
1479 |
+
label_ids = pred.label_ids
|
1480 |
|
1481 |
+
if isinstance(pred_ids, tuple):
|
1482 |
+
pred_ids = pred_ids[0]
|
1483 |
else:
|
1484 |
+
pred_ids = pred_ids
|
|
|
|
|
|
|
|
|
1485 |
|
1486 |
+
if pred_ids.ndim == 3:
|
|
|
|
|
|
|
|
|
|
|
|
|
1487 |
pred_ids = pred_ids.argmax(dim=-1)
|
1488 |
+
|
1489 |
+
pred_ids = pred_ids.tolist()
|
1490 |
+
label_ids = label_ids.tolist()
|
|
|
|
|
|
|
|
|
|
|
1491 |
|
1492 |
if print_pred:
|
1493 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
|
1494 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
|
1495 |
for i in range(min(num_samples, len(pred_str))):
|
1496 |
print(f"Preds: {pred_str[i]}")
|
1497 |
print(f"Label: {label_str[i]}")
|
1498 |
+
print(f"Preds: {pred_ids[i]}")
|
1499 |
+
print(f"Label: {label_ids[i]}")
|
1500 |
print("--------------------------------")
|
1501 |
|
1502 |
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
1503 |
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
1504 |
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1505 |
|
1506 |
+
return {"wer": wer}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1507 |
|
1508 |
logger = logging.getLogger(__name__)
|
1509 |
|
|
|
1569 |
trust_remote_code=True,
|
1570 |
streaming=False)
|
1571 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1572 |
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
|
1573 |
|
1574 |
if sanity_check:
|
|
|
1586 |
|
1587 |
dataset = dataset.filter(filter_func)
|
1588 |
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1589 |
+
train_dataset = dataset["train"]
|
1590 |
+
test_dataset = dataset["test"]
|
|
|
1591 |
|
1592 |
train_dataset = train_dataset.map(
|
1593 |
function=prepare_fn,
|
|
|
1619 |
return Seq2SeqTrainingArguments(
|
1620 |
output_dir=log_dir,
|
1621 |
per_device_train_batch_size=1,
|
1622 |
+
per_device_eval_batch_size=1,
|
1623 |
gradient_accumulation_steps=1,
|
1624 |
eval_accumulation_steps=4,
|
1625 |
eval_strategy="steps",
|
|
|
1677 |
training_args = get_training_args(
|
1678 |
log_dir,
|
1679 |
batch_eval_metrics = False,
|
1680 |
+
max_steps = 1000,
|
1681 |
save_steps = 1005,
|
1682 |
+
eval_steps = 100,
|
1683 |
+
warmup_steps = 100,
|
1684 |
+
logging_steps = 10,
|
1685 |
eval_on_start = False,
|
1686 |
learning_rate = 2.5e-4,
|
1687 |
weight_decay = 0.01,
|