Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,1581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pyworld as pw
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
import warnings
|
6 |
+
import logging
|
7 |
+
import gzip
|
8 |
+
import base64
|
9 |
+
import torch
|
10 |
+
import torchaudio
|
11 |
+
import torchcrepe
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.nn.init as init
|
14 |
+
from torch import nn, Tensor
|
15 |
+
import numpy as np
|
16 |
+
from typing import Optional, Dict, Union, List, Tuple, Any
|
17 |
+
from functools import partial
|
18 |
+
from datetime import datetime
|
19 |
+
from datasets import load_dataset, Audio
|
20 |
+
from transformers.trainer_seq2seq import Seq2SeqTrainer
|
21 |
+
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
22 |
+
import transformers
|
23 |
+
import evaluate
|
24 |
+
from dataclasses import dataclass
|
25 |
+
|
26 |
+
torch.backends.cudnn.allow_tf32 = True
|
27 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
28 |
+
torch.set_float32_matmul_precision('high')
|
29 |
+
transformers.utils.logging.set_verbosity_error()
|
30 |
+
|
31 |
+
device = torch.device(device="cuda:0")
|
32 |
+
dtype = torch.float32
|
33 |
+
|
34 |
+
torch.set_default_dtype(dtype)
|
35 |
+
warnings.filterwarnings("ignore")
|
36 |
+
logging.basicConfig(level=logging.ERROR)
|
37 |
+
tox = {"device": torch.device("cuda:0" if torch.cuda.is_available() else "cpu"), "dtype": torch.float32}
|
38 |
+
|
39 |
+
extractor = None
|
40 |
+
tokenizer = None
|
41 |
+
optimizer = None
|
42 |
+
scheduler = None
|
43 |
+
model = None
|
44 |
+
Residual = None
|
45 |
+
MultiheadA = None
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class Dimensions:
|
49 |
+
vocab: int
|
50 |
+
text_ctx: int
|
51 |
+
text_dims: int
|
52 |
+
text_head: int
|
53 |
+
text_idx: int
|
54 |
+
mels: int
|
55 |
+
aud_ctx: int
|
56 |
+
aud_dims: int
|
57 |
+
aud_head: int
|
58 |
+
aud_idx: int
|
59 |
+
act: str
|
60 |
+
debug: List[str]
|
61 |
+
cross_attn: bool
|
62 |
+
features: List[str]
|
63 |
+
f0_rotary: bool
|
64 |
+
|
65 |
+
def exists(v):
|
66 |
+
return v is not None
|
67 |
+
|
68 |
+
def default(v, b):
|
69 |
+
return v if exists(v) else b
|
70 |
+
|
71 |
+
class Conv1d(nn.Conv1d):
|
72 |
+
def _conv_forward(
|
73 |
+
self, x: Tensor, weight: Tensor, bias) -> Tensor:
|
74 |
+
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
|
75 |
+
|
76 |
+
class Conv2d(nn.Conv2d):
|
77 |
+
def _conv_forward(
|
78 |
+
self, x: Tensor, weight: Tensor, bias) -> Tensor:
|
79 |
+
return super()._conv_forward(x, weight.to(x.device, x.dtype), None if bias is None else bias.to(x.device, x.dtype))
|
80 |
+
|
81 |
+
class Linear(nn.Module):
|
82 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
|
83 |
+
super(Linear, self).__init__()
|
84 |
+
self.linear = nn.Linear(in_features, out_features, bias=bias)
|
85 |
+
init.xavier_uniform_(self.linear.weight)
|
86 |
+
if bias:
|
87 |
+
init.zeros_(self.linear.bias)
|
88 |
+
def forward(self, x: Tensor) -> Tensor:
|
89 |
+
return self.linear(x)
|
90 |
+
|
91 |
+
class RMSNorm(nn.Module):
|
92 |
+
def __init__(self, dims: Union[int, Tensor, List, Tuple],
|
93 |
+
eps = 1e-8, elementwise_affine = True):
|
94 |
+
super(RMSNorm, self).__init__()
|
95 |
+
if isinstance(dims, int):
|
96 |
+
self.normalized_shape = (dims,)
|
97 |
+
else:
|
98 |
+
self.normalized_shape = tuple(dims)
|
99 |
+
self.eps = eps
|
100 |
+
self.elementwise_affine = elementwise_affine
|
101 |
+
if self.elementwise_affine:
|
102 |
+
self.weight = nn.Parameter(torch.empty(self.normalized_shape))
|
103 |
+
init.ones_(self.weight)
|
104 |
+
else:
|
105 |
+
self.register_parameter("weight", None)
|
106 |
+
def forward(self, x):
|
107 |
+
return F.rms_norm(x, self.normalized_shape, self.weight, self.eps)
|
108 |
+
|
109 |
+
def LayerNorm(x: Tensor, normalized_shape: Union[int, Tensor, List, Tuple],
|
110 |
+
weight: Optional[Tensor] = None, bias: Optional[Tensor] = None,
|
111 |
+
eps: float = 1e-5) -> Tensor:
|
112 |
+
return F.layer_norm(x, normalized_shape, weight, bias, eps)
|
113 |
+
|
114 |
+
def get_device():
|
115 |
+
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
116 |
+
|
117 |
+
def get_dtype():
|
118 |
+
return torch.float32 if torch.cuda.is_available() else torch.float64
|
119 |
+
|
120 |
+
def get_tox():
|
121 |
+
return {"device": get_device(), "dtype": get_dtype()}
|
122 |
+
|
123 |
+
def sinusoids(length, channels, max_timescale=10000):
|
124 |
+
"""Returns sinusoids for positional embedding"""
|
125 |
+
assert channels % 2 == 0
|
126 |
+
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
127 |
+
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
128 |
+
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
129 |
+
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
130 |
+
|
131 |
+
class rotary(nn.Module):
|
132 |
+
_seen = set()
|
133 |
+
def __init__(self, dims, max_ctx=1500, theta=10000, learned_freq=True, variable_radius=False,
|
134 |
+
learned_radius=False, learned_theta=False, learned_pitch=False, debug: List[str] = []):
|
135 |
+
super().__init__()
|
136 |
+
self.use_pbias = False
|
137 |
+
|
138 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
139 |
+
self.device = device
|
140 |
+
dtype = torch.float32
|
141 |
+
self.dtype = dtype
|
142 |
+
self.debug = debug
|
143 |
+
self._counter = 0
|
144 |
+
self.dims = dims
|
145 |
+
self.max_ctx = max_ctx
|
146 |
+
self.variable_radius = variable_radius
|
147 |
+
|
148 |
+
self.inv_freq = nn.Parameter(
|
149 |
+
1.0 / (19000 ** (torch.arange(0, dims, 2, device=device, dtype=dtype) / dims)),
|
150 |
+
requires_grad=learned_freq)
|
151 |
+
self.theta = nn.Parameter(
|
152 |
+
torch.tensor(float(theta)), requires_grad=learned_theta)
|
153 |
+
self.min_theta = nn.Parameter(
|
154 |
+
torch.tensor(600.0), requires_grad=learned_theta)
|
155 |
+
self.max_theta = nn.Parameter(
|
156 |
+
torch.tensor(2400.0), requires_grad=learned_theta)
|
157 |
+
|
158 |
+
self.pitch_scale = nn.Parameter(torch.tensor(1.0),
|
159 |
+
requires_grad=learned_pitch)
|
160 |
+
|
161 |
+
if variable_radius:
|
162 |
+
self.radius = nn.Parameter(
|
163 |
+
torch.ones(dims // 2),
|
164 |
+
requires_grad=learned_radius)
|
165 |
+
|
166 |
+
def get_pitch_bias(self, f0):
|
167 |
+
if f0 is None:
|
168 |
+
return None
|
169 |
+
|
170 |
+
f0_flat = f0.squeeze().float()
|
171 |
+
f0_norm = (f0_flat - f0_flat.mean()) / (f0_flat.std() + 1e-8)
|
172 |
+
f0_sim = torch.exp(-torch.cdist(f0_norm.unsqueeze(1),
|
173 |
+
f0_norm.unsqueeze(1)) * self.pitch_scale)
|
174 |
+
return f0_sim.unsqueeze(0).unsqueeze(0)
|
175 |
+
|
176 |
+
def add_to_rotary(self):
|
177 |
+
def get_sim(self, freqs):
|
178 |
+
real = freqs.real.squeeze(0)
|
179 |
+
imag = freqs.imag.squeeze(0)
|
180 |
+
vecs = torch.cat([real.unsqueeze(-2), imag.unsqueeze(-2)], dim=-1)
|
181 |
+
vecs = vecs.squeeze(-2)
|
182 |
+
return F.cosine_similarity(vecs.unsqueeze(1), vecs.unsqueeze(0), dim=-1)
|
183 |
+
|
184 |
+
def fwd_sim(self, x=None, f0=None):
|
185 |
+
freqs = self.forward(x, f0)
|
186 |
+
sim = get_sim(self, freqs)
|
187 |
+
return freqs, sim
|
188 |
+
|
189 |
+
rotary.get_sim = get_sim
|
190 |
+
rotary.fwd_sim = fwd_sim
|
191 |
+
|
192 |
+
def forward(self, x = None, f0=None) -> Tensor:
|
193 |
+
if isinstance(x, int):
|
194 |
+
t = torch.arange(x, device=self.device).float()
|
195 |
+
else:
|
196 |
+
t = x.float().to(self.inv_freq.device)
|
197 |
+
|
198 |
+
if f0 is not None:
|
199 |
+
|
200 |
+
f0_mean = f0.mean()
|
201 |
+
perceptual_factor = torch.log(1 + f0_mean / 700.0) / torch.log(torch.tensor(1 + 300.0 / 700.0))
|
202 |
+
min_theta, max_theta = 800.0, 10000.0
|
203 |
+
f0_theta = self.theta + perceptual_factor * (max_theta - min_theta)
|
204 |
+
inv_freq = 1.0 / (f0_theta ** (torch.arange(0, self.dims, 2, device=self.device) / self.dims))
|
205 |
+
else:
|
206 |
+
inv_freq = self.inv_freq
|
207 |
+
freqs = torch.einsum('i,j->ij', t, inv_freq)
|
208 |
+
|
209 |
+
freqs = freqs.float()
|
210 |
+
if self.variable_radius:
|
211 |
+
radius = F.softplus(self.radius)
|
212 |
+
freqs = torch.polar(radius.unsqueeze(0).expand_as(freqs), freqs)
|
213 |
+
else:
|
214 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
215 |
+
freqs = freqs.unsqueeze(0)
|
216 |
+
|
217 |
+
if "rotary" in self.debug:
|
218 |
+
if f0 is not None:
|
219 |
+
key = f"{self._counter}_{f0_theta:.2f}"
|
220 |
+
if key not in rotary._seen:
|
221 |
+
if not hasattr(self, '_prev_f0_theta'):
|
222 |
+
self._prev_f0_theta = f0_theta
|
223 |
+
print(f"Step {self._counter}: Using raw F0 as theta: {f0_theta:.2f} Hz")
|
224 |
+
elif abs(self._prev_f0_theta - f0_theta) > 200.0:
|
225 |
+
print(f"Step {self._counter}: Using raw F0 as theta: {f0_theta:.2f} Hz")
|
226 |
+
self._prev_f0_theta = f0_theta
|
227 |
+
rotary._seen.add(key)
|
228 |
+
self._counter += 1
|
229 |
+
|
230 |
+
return freqs
|
231 |
+
|
232 |
+
@staticmethod
|
233 |
+
def apply_rotary(x, freqs):
|
234 |
+
multihead_format = len(freqs.shape) == 4
|
235 |
+
if multihead_format:
|
236 |
+
x1 = x[..., :freqs.shape[-1]*2]
|
237 |
+
x2 = x[..., freqs.shape[-1]*2:]
|
238 |
+
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
239 |
+
x1 = torch.view_as_complex(x1)
|
240 |
+
x1 = x1 * freqs
|
241 |
+
x1 = torch.view_as_real(x1).flatten(-2)
|
242 |
+
return torch.cat([x1.type_as(x), x2], dim=-1)
|
243 |
+
|
244 |
+
else:
|
245 |
+
x1 = x[..., :freqs.shape[-1]*2]
|
246 |
+
x2 = x[..., freqs.shape[-1]*2:]
|
247 |
+
|
248 |
+
if x.ndim == 2:
|
249 |
+
|
250 |
+
x1 = x1.unsqueeze(0)
|
251 |
+
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
252 |
+
x1 = torch.view_as_complex(x1)
|
253 |
+
x1 = x1 * freqs
|
254 |
+
x1 = torch.view_as_real(x1).flatten(-2)
|
255 |
+
x1 = x1.squeeze(0)
|
256 |
+
return torch.cat([x1.type_as(x), x2], dim=-1)
|
257 |
+
else:
|
258 |
+
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
259 |
+
x1 = torch.view_as_complex(x1)
|
260 |
+
x1 = x1 * freqs
|
261 |
+
x1 = torch.view_as_real(x1).flatten(-2)
|
262 |
+
return torch.cat([x1.type_as(x), x2], dim=-1)
|
263 |
+
|
264 |
+
class SliceAttention(nn.Module):
|
265 |
+
def __init__(self, dims, heads, dropout=0.0):
|
266 |
+
super().__init__()
|
267 |
+
self.dims = dims
|
268 |
+
self.heads = heads
|
269 |
+
self.head_dim = dims // heads
|
270 |
+
self.scale = self.head_dim ** -0.5
|
271 |
+
|
272 |
+
self.q_proj = Linear(dims, dims)
|
273 |
+
self.k_proj = Linear(dims, dims)
|
274 |
+
self.v_proj = Linear(dims, dims)
|
275 |
+
self.out_proj = Linear(dims, dims)
|
276 |
+
self.dropout = nn.Dropout(dropout)
|
277 |
+
|
278 |
+
assert dims % heads == 0, f"Dimensions {dims} not divisible by heads {heads}"
|
279 |
+
|
280 |
+
def parallel_slice(self, q, k, v, mask=None):
|
281 |
+
batch, heads, ctx, dims = q.shape
|
282 |
+
head_dim = self.head_dim
|
283 |
+
batch, ctx, dims = q.shape
|
284 |
+
ctx_len = k.shape[1]
|
285 |
+
num_heads = dims // head_dim
|
286 |
+
|
287 |
+
scores = torch.zeros(batch, num_heads, ctx, ctx_len, device=q.device)
|
288 |
+
|
289 |
+
for h in range(num_heads):
|
290 |
+
start_idx = h * head_dim
|
291 |
+
end_idx = start_idx + head_dim
|
292 |
+
q_h = q[:, :, start_idx:end_idx]
|
293 |
+
k_h = k[:, :, start_idx:end_idx]
|
294 |
+
|
295 |
+
scores[:, h] = torch.bmm(q_h, k_h.transpose(1, 2)) / math.sqrt(head_dim)
|
296 |
+
|
297 |
+
if mask is not None:
|
298 |
+
scores = scores + mask.unsqueeze(0).unsqueeze(0)
|
299 |
+
|
300 |
+
attn_weights = F.softmax(scores, dim=-1)
|
301 |
+
|
302 |
+
output = torch.zeros_like(q)
|
303 |
+
for h in range(num_heads):
|
304 |
+
start_idx = h * head_dim
|
305 |
+
end_idx = start_idx + head_dim
|
306 |
+
v_h = v[:, :, start_idx:end_idx]
|
307 |
+
output[:, :, start_idx:end_idx] = torch.bmm(attn_weights[:, h], v_h)
|
308 |
+
return output
|
309 |
+
|
310 |
+
def forward(self, x, context=None, mask=None):
|
311 |
+
batch, ctx, _ = x.shape
|
312 |
+
if context is None:
|
313 |
+
context = x
|
314 |
+
|
315 |
+
ctx_len = context.shape[1]
|
316 |
+
q = self.q_proj(x)
|
317 |
+
k = self.k_proj(context)
|
318 |
+
v = self.v_proj(context)
|
319 |
+
output = torch.zeros_like(q)
|
320 |
+
|
321 |
+
for h in range(self.heads):
|
322 |
+
start_idx = h * self.head_dim
|
323 |
+
end_idx = start_idx + self.head_dim
|
324 |
+
|
325 |
+
q_h = q[:, :, start_idx:end_idx]
|
326 |
+
k_h = k[:, :, start_idx:end_idx]
|
327 |
+
v_h = v[:, :, start_idx:end_idx]
|
328 |
+
|
329 |
+
attn_scores = torch.bmm(q_h, k_h.transpose(1, 2)) * self.scale
|
330 |
+
if mask is not None:
|
331 |
+
attn_scores = attn_scores + mask[:ctx, :ctx_len].unsqueeze(0)
|
332 |
+
|
333 |
+
attn_weights = F.softmax(attn_scores, dim=-1)
|
334 |
+
attn_weights = self.dropout(attn_weights)
|
335 |
+
head_output = torch.bmm(attn_weights, v_h)
|
336 |
+
output[:, :, start_idx:end_idx] = head_output
|
337 |
+
return self.out_proj(output)
|
338 |
+
|
339 |
+
def optim_attn(q, k, v, mask=None, scale=None, pad_token=0, fzero_val=0.0001):
|
340 |
+
|
341 |
+
batch, heads, ctx, dims = q.shape
|
342 |
+
token_ids = k[:, :, :, 0]
|
343 |
+
is_padding = (token_ids.float() == pad_token).unsqueeze(-2)
|
344 |
+
log_scale_factor = -10.0
|
345 |
+
attn_mask = torch.zeros((batch, heads, ctx, ctx), device=q.device)
|
346 |
+
|
347 |
+
if mask is not None:
|
348 |
+
attn_mask = attn_mask + mask.unsqueeze(0).unsqueeze(0)
|
349 |
+
attn_mask = torch.where(is_padding,
|
350 |
+
torch.tensor(log_scale_factor, device=q.device),
|
351 |
+
attn_mask)
|
352 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
353 |
+
q, k, v, attn_mask=attn_mask,
|
354 |
+
dropout_p=0.0, is_causal=False)
|
355 |
+
attn_output = attn_output.permute(0, 2, 1, 3).flatten(start_dim=2)
|
356 |
+
return attn_output
|
357 |
+
|
358 |
+
class MultiheadA(nn.Module):
|
359 |
+
_seen = set()
|
360 |
+
rbf = False
|
361 |
+
def __init__(self, dims: int, head: int, rotary_emb: bool = False,
|
362 |
+
zero_val: float = 0.0001, minz: float = 0.0, maxz: float = 0.001, debug: List[str] = [], optim_attn=False):
|
363 |
+
|
364 |
+
super(MultiheadA, self).__init__()
|
365 |
+
|
366 |
+
self.debug = debug
|
367 |
+
self.pad_token = 0
|
368 |
+
self.dims = dims
|
369 |
+
self.head = head
|
370 |
+
self.head_dim = dims // head
|
371 |
+
self.rotary_emb = rotary_emb
|
372 |
+
self.minz = minz
|
373 |
+
self.maxz = maxz
|
374 |
+
self.zero_val = zero_val
|
375 |
+
self.optim_attn = optim_attn
|
376 |
+
self._counter = 0
|
377 |
+
if dims % head != 0:
|
378 |
+
raise ValueError(f"Dimensions {dims} must be divisible by number of heads {head}.")
|
379 |
+
if zero_val < minz or zero_val > maxz:
|
380 |
+
raise ValueError(f"Zero value {zero_val} must be between {minz} and {maxz}.")
|
381 |
+
|
382 |
+
self.q = Linear(dims, dims)
|
383 |
+
self.k = Linear(dims, dims, bias=False)
|
384 |
+
self.v = Linear(dims, dims)
|
385 |
+
self.o = Linear(dims, dims)
|
386 |
+
self.fzero = nn.Parameter(torch.tensor(zero_val, dtype=torch.float32), requires_grad=True)
|
387 |
+
|
388 |
+
if rotary_emb:
|
389 |
+
self.rope = rotary(
|
390 |
+
dims=self.head_dim,
|
391 |
+
debug = debug,
|
392 |
+
max_ctx=1500,
|
393 |
+
)
|
394 |
+
else:
|
395 |
+
self.rope = None
|
396 |
+
|
397 |
+
def enhanced_attention_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
398 |
+
scale = (self.dims // self.head) ** -0.25
|
399 |
+
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
400 |
+
if rbf_ratio <= 0.0:
|
401 |
+
return dot_scores
|
402 |
+
q_norm = q.pow(2).sum(dim=-1, keepdim=True)
|
403 |
+
k_norm = k.pow(2).sum(dim=-1, keepdim=True)
|
404 |
+
qk = torch.matmul(q, k.transpose(-1, -2))
|
405 |
+
dist_sq = q_norm + k_norm.transpose(-1, -2) - 2 * qk
|
406 |
+
rbf_scores = torch.exp(-dist_sq / (2 * rbf_sigma**2))
|
407 |
+
return (1 - rbf_ratio) * dot_scores + rbf_ratio * rbf_scores
|
408 |
+
|
409 |
+
def forward(self, x: Tensor, xa: Tensor = None, mask: Tensor = None,
|
410 |
+
return_attn: bool = False, f0: Tensor = None) -> tuple:
|
411 |
+
|
412 |
+
batch, ctx, dims = x.shape
|
413 |
+
scale = (self.dims // self.head) ** -0.25
|
414 |
+
|
415 |
+
z = default(xa, x)
|
416 |
+
q = self.q(x).to(x.dtype)
|
417 |
+
k = self.k(z).to(x.dtype)
|
418 |
+
v = self.v(z).to(x.dtype)
|
419 |
+
|
420 |
+
if self.rotary_emb:
|
421 |
+
if f0 is not None:
|
422 |
+
qf = self.rope(q.size(1), f0=f0)
|
423 |
+
kf = self.rope(k.size(1), f0=f0)
|
424 |
+
else:
|
425 |
+
qf = self.rope(q.size(1))
|
426 |
+
kf = self.rope(k.size(1))
|
427 |
+
|
428 |
+
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
429 |
+
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
430 |
+
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
431 |
+
|
432 |
+
q = self.rope.apply_rotary(q, qf)
|
433 |
+
k = self.rope.apply_rotary(k, kf)
|
434 |
+
|
435 |
+
else:
|
436 |
+
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
437 |
+
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
438 |
+
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
439 |
+
batch, head, ctx, head_dim = q.shape
|
440 |
+
|
441 |
+
if self.optim_attn and not return_attn:
|
442 |
+
wv = optim_attn(q * scale, k * scale, v, mask=mask,
|
443 |
+
pad_token=self.pad_token, fzero_val=torch.clamp(F.softplus(self.fzero), self.minz, self.maxz).item())
|
444 |
+
return self.o(wv), None
|
445 |
+
|
446 |
+
if self.rbf:
|
447 |
+
qk = self.enhanced_attention_scores(q * scale, k * scale, rbf_sigma=1.0, rbf_ratio=0.3)
|
448 |
+
|
449 |
+
qk = (q * scale) @ (k * scale).transpose(-1, -2)
|
450 |
+
if f0 is not None and self.rope.use_pbias:
|
451 |
+
pbias = self.rope.pbias(f0)
|
452 |
+
if pbias is not None:
|
453 |
+
qk = qk + pbias[:,:,:q.shape[2],:q.shape[2]]
|
454 |
+
token_ids = k[:, :, :, 0]
|
455 |
+
zscale = torch.ones_like(token_ids)
|
456 |
+
fzero = torch.clamp(F.softplus(self.fzero), self.minz, self.maxz)
|
457 |
+
zscale[token_ids.float() == self.pad_token] = fzero.to(q.device, q.dtype)
|
458 |
+
|
459 |
+
if mask is not None:
|
460 |
+
mask = mask[:q.shape[2], :q.shape[2]]
|
461 |
+
qk = qk + mask.unsqueeze(0).unsqueeze(0) * zscale.unsqueeze(-2).expand(qk.shape)
|
462 |
+
qk = qk * zscale.unsqueeze(-2)
|
463 |
+
if return_attn:
|
464 |
+
return qk, v
|
465 |
+
w = F.softmax(qk, dim=-1).to(q.dtype)
|
466 |
+
wv = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
|
467 |
+
|
468 |
+
if "multihead" in self.debug and self._counter % 100 == 0:
|
469 |
+
print(f"Step {self._counter}: Using rotary embeddings: {self.rotary_emb}")
|
470 |
+
print(f"MHA: q={q.shape}, k={k.shape}, v={v.shape}")
|
471 |
+
print(f"Attention shape: {qk.shape}, wv shape: {wv.shape}")
|
472 |
+
self._counter += 1
|
473 |
+
return self.o(wv), qk.detach()
|
474 |
+
|
475 |
+
class FCGate(nn.Module):
|
476 |
+
def __init__(self, dims, dim):
|
477 |
+
super().__init__()
|
478 |
+
self.proj = Linear(dim, dims // 4)
|
479 |
+
self.gate = nn.Sequential(
|
480 |
+
Linear(dims + dims // 4, dims // 2),
|
481 |
+
nn.SiLU(),
|
482 |
+
Linear(dims // 2, 1),
|
483 |
+
nn.Sigmoid()
|
484 |
+
)
|
485 |
+
def forward(self, x, embedding):
|
486 |
+
info = self.proj(embedding)
|
487 |
+
info = info.unsqueeze(1).expand(-1, x.shape[1], -1)
|
488 |
+
gate_input = torch.cat([x, info], dim=-1)
|
489 |
+
return self.gate(gate_input)
|
490 |
+
|
491 |
+
class TTGate(nn.Module):
|
492 |
+
def __init__(self, dims, num_types=4):
|
493 |
+
super().__init__()
|
494 |
+
self.gate_projections = nn.ModuleList([
|
495 |
+
nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
496 |
+
for _ in range(num_types)])
|
497 |
+
self.type_classifier = nn.Sequential(
|
498 |
+
Linear(dims, num_types),
|
499 |
+
nn.Softmax(dim=-1))
|
500 |
+
def forward(self, x):
|
501 |
+
type_probs = self.type_classifier(x)
|
502 |
+
gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
|
503 |
+
combined_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
|
504 |
+
return combined_gate
|
505 |
+
|
506 |
+
class MGate(nn.Module):
|
507 |
+
def __init__(self, dims, memory_size=64):
|
508 |
+
super().__init__()
|
509 |
+
self.mkey = nn.Parameter(torch.randn(memory_size, dims))
|
510 |
+
self.mvalue = nn.Parameter(torch.randn(memory_size, 1))
|
511 |
+
self.gate_proj = nn.Sequential(Linear(dims, dims//2), nn.SiLU(), Linear(dims//2, 1))
|
512 |
+
|
513 |
+
def forward(self, x):
|
514 |
+
dgate = torch.sigmoid(self.gate_proj(x))
|
515 |
+
attention = torch.matmul(x, self.mkey.transpose(0, 1))
|
516 |
+
attention = F.softmax(attention / math.sqrt(x.shape[-1]), dim=-1)
|
517 |
+
mgate = torch.matmul(attention, self.mvalue)
|
518 |
+
mgate = torch.sigmoid(mgate)
|
519 |
+
return 0.5 * (dgate + mgate)
|
520 |
+
|
521 |
+
class CMGate(nn.Module):
|
522 |
+
def __init__(self, dims):
|
523 |
+
super().__init__()
|
524 |
+
self.sgate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
525 |
+
self.wgate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
526 |
+
self.pgate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
527 |
+
self.integration = Linear(dims*3, dims)
|
528 |
+
|
529 |
+
def forward(self, x, features):
|
530 |
+
sfeat = features.get("spectrogram", x)
|
531 |
+
wfeat = features.get("waveform", x)
|
532 |
+
pfeat = features.get("pitch", x)
|
533 |
+
spec = self.sgate(x) * sfeat
|
534 |
+
wave = self.wgate(x) * wfeat
|
535 |
+
pitch = self.pgate(x) * pfeat
|
536 |
+
|
537 |
+
combined = torch.cat([spec, wave, pitch], dim=-1)
|
538 |
+
return self.integration(combined)
|
539 |
+
|
540 |
+
class Residual(nn.Module):
|
541 |
+
_seen = set()
|
542 |
+
def __init__(self, dims: int, head: int, ctx, act, cross_attn=True, debug: List[str] = [],
|
543 |
+
fgate=False, tgate=False, mgate=False, cgate=False,
|
544 |
+
memory_size=512, features=None):
|
545 |
+
super().__init__()
|
546 |
+
self.ctx = ctx
|
547 |
+
self._counter = 0
|
548 |
+
self.dropout = 0.01
|
549 |
+
self.dims = dims
|
550 |
+
self.head = head
|
551 |
+
self.head_dim = dims // head
|
552 |
+
self.cross_attn = cross_attn
|
553 |
+
self.debug = debug
|
554 |
+
self.fgate = fgate
|
555 |
+
self.tgate = tgate
|
556 |
+
self.mgate = mgate
|
557 |
+
self.cgate = cgate
|
558 |
+
self.features = features
|
559 |
+
self.blend = nn.Parameter(torch.tensor(0.5))
|
560 |
+
|
561 |
+
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(),
|
562 |
+
"tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(),
|
563 |
+
"softplus": nn.Softplus(), "softshrink": nn.Softshrink(),
|
564 |
+
"leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
565 |
+
act_fn = act_map.get(act, nn.GELU())
|
566 |
+
|
567 |
+
self.attna = MultiheadA(dims, head, rotary_emb=True, debug=debug)
|
568 |
+
self.attnb = (MultiheadA(dims, head, rotary_emb=True, debug=debug) if cross_attn else None)
|
569 |
+
|
570 |
+
mlp = dims * 4
|
571 |
+
self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
|
572 |
+
|
573 |
+
self.fgate = FCGate(dims=dims, dim=dims) if fgate else None
|
574 |
+
self.tgate = TTGate(dims=dims, num_types=4) if tgate else None
|
575 |
+
self.mgate = MGate(dims=dims, memory_size=memory_size) if mgate else None
|
576 |
+
self.cgate = CMGate(dims=dims) if cgate else None
|
577 |
+
|
578 |
+
self.lna = RMSNorm(dims)
|
579 |
+
self.lnb = RMSNorm(dims) if cross_attn else None
|
580 |
+
self.lnc = RMSNorm(dims)
|
581 |
+
|
582 |
+
if not any([fgate, tgate, mgate, cgate]):
|
583 |
+
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
584 |
+
|
585 |
+
def forward(self, x, xa=None, mask=None, f0=None, mode=None):
|
586 |
+
x = x + self.attna(self.lna(x), mask=mask, f0=f0)[0]
|
587 |
+
|
588 |
+
if self.attnb and xa is not None:
|
589 |
+
cross = self.attnb(self.lnb(x), xa, f0=f0, mask=None)[0]
|
590 |
+
blend = torch.sigmoid(self.blend)
|
591 |
+
x = blend * x + (1 - blend) * cross
|
592 |
+
|
593 |
+
normx = self.lnc(x)
|
594 |
+
mlp_out = self.mlp(normx)
|
595 |
+
|
596 |
+
if self.tgate:
|
597 |
+
gate = self.tgate(normx)
|
598 |
+
x = x + gate * mlp_out
|
599 |
+
|
600 |
+
elif self.fgate:
|
601 |
+
embedding = f0.mean(dim=1) if f0 is not None else xa.mean(dim=1)
|
602 |
+
gate = self.fg(normx, embedding)
|
603 |
+
x = x + gate * mlp_out
|
604 |
+
|
605 |
+
elif self.mgate:
|
606 |
+
gate = self.mgate(normx)
|
607 |
+
x = x + gate * mlp_out
|
608 |
+
|
609 |
+
elif self.cgate and mode is not None:
|
610 |
+
gate_output = self.cgate(normx, self.features)
|
611 |
+
x = x + gate_output
|
612 |
+
|
613 |
+
else:
|
614 |
+
if hasattr(self, 'mlp_gate'):
|
615 |
+
mlp_gate = self.mlp_gate(normx)
|
616 |
+
x = x + mlp_gate * mlp_out
|
617 |
+
else:
|
618 |
+
x = x + mlp_out
|
619 |
+
if "residual" in self.debug and self._counter % 100 == 0:
|
620 |
+
print(f"Step {self._counter}: Residual block output shape: {x.shape}, xa shape: {xa.shape if xa is not None else None}")
|
621 |
+
self._counter += 1
|
622 |
+
return x
|
623 |
+
|
624 |
+
class PEncoder(nn.Module):
|
625 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act):
|
626 |
+
super().__init__()
|
627 |
+
|
628 |
+
self.head_dim = dims // head
|
629 |
+
self.dropout = 0.01
|
630 |
+
|
631 |
+
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
632 |
+
act_fn = act_map.get(act, nn.GELU())
|
633 |
+
|
634 |
+
self.encoder = nn.Sequential(
|
635 |
+
Conv1d(input_dims, dims//4, kernel_size=7, stride=8, padding=3), act_fn,
|
636 |
+
Conv1d(dims//4, dims//2, kernel_size=5, stride=4, padding=2), act_fn,
|
637 |
+
Conv1d(dims//2, dims, kernel_size=5, stride=5, padding=2),act_fn)
|
638 |
+
|
639 |
+
def forward(self, x, f0=None):
|
640 |
+
x = self.encoder(x).permute(0, 2, 1)
|
641 |
+
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
|
642 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
643 |
+
x = self.norm(x)
|
644 |
+
return x
|
645 |
+
|
646 |
+
class WEncoder(nn.Module):
|
647 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act):
|
648 |
+
super().__init__()
|
649 |
+
|
650 |
+
self.head_dim = dims // head
|
651 |
+
self.dropout = 0.01
|
652 |
+
|
653 |
+
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
654 |
+
act_fn = act_map.get(act, nn.GELU())
|
655 |
+
|
656 |
+
self.downsample = nn.Sequential(
|
657 |
+
Conv1d(input_dims, dims//8, kernel_size=15, stride=8, padding=7), act_fn,
|
658 |
+
Conv1d(dims//8, dims//4, kernel_size=7, stride=4, padding=3), act_fn,
|
659 |
+
Conv1d(dims//4, dims, kernel_size=9, stride=5, padding=4), act_fn)
|
660 |
+
|
661 |
+
self.encoder = nn.Sequential(
|
662 |
+
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims//8), act_fn,
|
663 |
+
Conv1d(dims, dims, kernel_size=1), act_fn)
|
664 |
+
|
665 |
+
self.positional = lambda length: sinusoids(length, dims)
|
666 |
+
self.norm = RMSNorm(dims)
|
667 |
+
|
668 |
+
def forward(self, x, f0=None):
|
669 |
+
x = self.downsample(x)
|
670 |
+
x = self.encoder(x)
|
671 |
+
x = x.permute(0, 2, 1)
|
672 |
+
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
|
673 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
674 |
+
return self.norm(x)
|
675 |
+
|
676 |
+
class FEncoder(nn.Module):
|
677 |
+
def __init__(self, input_dims, dims, head, layer, kernel_size, act, stride=1):
|
678 |
+
super().__init__()
|
679 |
+
|
680 |
+
self.head_dim = dims // head
|
681 |
+
self.dropout = 0.01
|
682 |
+
|
683 |
+
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
684 |
+
act_fn = act_map.get(act, nn.GELU())
|
685 |
+
|
686 |
+
self.encoder = nn.Sequential(
|
687 |
+
Conv1d(input_dims, dims, kernel_size=kernel_size, stride=stride, padding=kernel_size//2), act_fn,
|
688 |
+
Conv1d(dims, dims, kernel_size=5, padding=2), act_fn,
|
689 |
+
Conv1d(dims, dims, kernel_size=3, padding=1, groups=dims), act_fn)
|
690 |
+
|
691 |
+
self.positional = lambda length: sinusoids(length, dims)
|
692 |
+
self.norm = RMSNorm(dims)
|
693 |
+
self._norm = RMSNorm(dims)
|
694 |
+
|
695 |
+
def forward(self, x, f0=None):
|
696 |
+
x = self.encoder(x).permute(0, 2, 1)
|
697 |
+
x = x + self.positional(x.shape[1]).to(x.device, x.dtype)
|
698 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
699 |
+
x = self._norm(x)
|
700 |
+
return x
|
701 |
+
|
702 |
+
class AudioEncoder(nn.Module):
|
703 |
+
_seen = set()
|
704 |
+
def __init__(self, mels: int, layer: int, dims: int, head: int, ctx: int, features: List[str],
|
705 |
+
debug: List[str], f0_rotary: bool = False, act: str = "gelu"):
|
706 |
+
super(AudioEncoder, self).__init__()
|
707 |
+
|
708 |
+
self.debug = debug
|
709 |
+
self.features = features
|
710 |
+
self._counter = 0
|
711 |
+
self.dropout = 0.01
|
712 |
+
self.f0_rotary = f0_rotary
|
713 |
+
self.dims = dims
|
714 |
+
self.ctx = ctx
|
715 |
+
self.head = head
|
716 |
+
self.head_dim = dims // head
|
717 |
+
|
718 |
+
self.rope = rotary(
|
719 |
+
dims=self.head_dim,
|
720 |
+
debug=debug,)
|
721 |
+
|
722 |
+
act_map = {"gelu": nn.GELU(), "relu": nn.ReLU(), "sigmoid": nn.Sigmoid(), "tanh": nn.Tanh(), "swish": nn.SiLU(), "tanhshrink": nn.Tanhshrink(), "softplus": nn.Softplus(), "softshrink": nn.Softshrink(), "leaky_relu": nn.LeakyReLU(), "elu": nn.ELU()}
|
723 |
+
act_fn = act_map.get(act, nn.GELU())
|
724 |
+
|
725 |
+
if features == ["spectrogram", "waveform", "pitch"]:
|
726 |
+
cgate=True
|
727 |
+
else:
|
728 |
+
cgate = False
|
729 |
+
|
730 |
+
self.blocks = nn.ModuleDict({
|
731 |
+
"spectrogram": nn.ModuleList(
|
732 |
+
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
733 |
+
[Residual(dims=dims, head=head, ctx=ctx, act=act, debug=debug, cgate=cgate, features=features) for _ in range(layer)] if "spectrogram" in features else None
|
734 |
+
),
|
735 |
+
"waveform": nn.ModuleList(
|
736 |
+
[WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] +
|
737 |
+
[Residual(dims=dims, head=head, ctx=ctx, act=act, debug=debug, cgate=cgate, features=features) for _ in range(layer)] if "waveform" in features else None
|
738 |
+
),
|
739 |
+
"pitch": nn.ModuleList(
|
740 |
+
[FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)] +
|
741 |
+
[Residual(dims=dims, head=head, ctx=ctx, act=act, debug=debug, cgate=cgate, features=features) for _ in range(layer)] if "pitch" in features else None
|
742 |
+
),
|
743 |
+
"spec_envelope": nn.ModuleList(
|
744 |
+
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
745 |
+
[Residual(dims=dims, head=head, ctx=ctx, act=act, debug=debug) for _ in range(layer)] if "spec_envelope" in features else None
|
746 |
+
),
|
747 |
+
"spec_phase": nn.ModuleList(
|
748 |
+
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
749 |
+
[Residual(dims=dims, head=head, ctx=ctx, act=act, debug=debug) for _ in range(layer)] if "spec_phase" in features else None),
|
750 |
+
})
|
751 |
+
|
752 |
+
def forward(self, x, f0=None):
|
753 |
+
outputs = {}
|
754 |
+
if self.f0_rotary:
|
755 |
+
f0 = f0 if f0 is not None else x.get("pitch")
|
756 |
+
else:
|
757 |
+
f0 = None
|
758 |
+
for y in self.features:
|
759 |
+
if y in x and y in self.blocks:
|
760 |
+
f = x[y]
|
761 |
+
for block in self.blocks[y]:
|
762 |
+
f = block(f, f0=f0)
|
763 |
+
outputs[y] = f
|
764 |
+
|
765 |
+
if "encoder" in self.debug and self._counter % 100 == 0:
|
766 |
+
names = list(x.keys())
|
767 |
+
shapes = {k: v.shape for k, v in x.items()}
|
768 |
+
print(f"Step {self._counter}: mode: {names}")
|
769 |
+
print(f"shapes: {shapes}")
|
770 |
+
self._counter += 1
|
771 |
+
return outputs
|
772 |
+
|
773 |
+
class TextDecoder(nn.Module):
|
774 |
+
def __init__(self, vocab: int, layer: int, dims: int, head: int, ctx: int, cross_attn: bool,
|
775 |
+
features: List[str], debug: List[str], f0_rotary: bool = False, sequential=False):
|
776 |
+
super(TextDecoder, self).__init__()
|
777 |
+
|
778 |
+
self._counter = 0
|
779 |
+
self.dropout = 0.01
|
780 |
+
self.debug = debug
|
781 |
+
self.sequential = sequential
|
782 |
+
self.features = features
|
783 |
+
self.f0_rotary = f0_rotary
|
784 |
+
|
785 |
+
self.token = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)
|
786 |
+
with torch.no_grad():
|
787 |
+
self.token.weight[0].zero_()
|
788 |
+
self.positional = nn.Parameter(data=torch.empty(ctx, dims), requires_grad=True)
|
789 |
+
|
790 |
+
self._blocks = nn.ModuleList([
|
791 |
+
Residual(dims=dims, head=head, ctx=ctx, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
|
792 |
+
for _ in range(layer)])
|
793 |
+
|
794 |
+
self.blocks = nn.ModuleDict({
|
795 |
+
f: nn.ModuleList([Residual(dims=dims, head=head, ctx=ctx, act="gelu", cross_attn=cross_attn, debug=debug, features=features)
|
796 |
+
for _ in range(layer)]) for f in features})
|
797 |
+
|
798 |
+
self.blend = nn.ParameterDict({f: nn.Parameter(torch.tensor(0.5)) for f in features})
|
799 |
+
|
800 |
+
self.ln_dec = RMSNorm(dims)
|
801 |
+
|
802 |
+
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
|
803 |
+
self.register_buffer("mask", mask, persistent=False)
|
804 |
+
|
805 |
+
def forward(self, x, enc, order=None, f0=None) -> Tensor:
|
806 |
+
x = x.to(device)
|
807 |
+
if self.f0_rotary:
|
808 |
+
f0 = f0
|
809 |
+
else:
|
810 |
+
f0 = None
|
811 |
+
if order is None:
|
812 |
+
order = self.features
|
813 |
+
mask = self.mask[:x.shape[1], :x.shape[1]]
|
814 |
+
x = self.token(x) + self.positional[:x.shape[1]]
|
815 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
816 |
+
for block in self._blocks:
|
817 |
+
x = block(x, f0=f0, mask=mask)
|
818 |
+
for f in order:
|
819 |
+
if f in enc:
|
820 |
+
xa = enc[f]
|
821 |
+
for block in self.blocks[f]:
|
822 |
+
out = block(x=x, xa=xa, f0=f0, mask=None)
|
823 |
+
a = torch.sigmoid(self.blend[f])
|
824 |
+
x = a * out + (1 - a) * x
|
825 |
+
x = self.ln_dec(x)
|
826 |
+
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
827 |
+
|
828 |
+
class Echo(nn.Module):
|
829 |
+
def __init__(self, param: Dimensions):
|
830 |
+
super().__init__()
|
831 |
+
self.param = param
|
832 |
+
|
833 |
+
self.encoder = AudioEncoder(
|
834 |
+
mels=param.mels,
|
835 |
+
ctx=param.aud_ctx,
|
836 |
+
dims=param.aud_dims,
|
837 |
+
head=param.aud_head,
|
838 |
+
layer=param.aud_idx,
|
839 |
+
act=param.act,
|
840 |
+
debug=param.debug,
|
841 |
+
features=param.features,
|
842 |
+
f0_rotary=param.f0_rotary,
|
843 |
+
)
|
844 |
+
|
845 |
+
self.decoder = TextDecoder(
|
846 |
+
vocab=param.vocab,
|
847 |
+
ctx=param.text_ctx,
|
848 |
+
dims=param.text_dims,
|
849 |
+
head=param.text_head,
|
850 |
+
layer=param.text_idx,
|
851 |
+
cross_attn=param.cross_attn,
|
852 |
+
debug=param.debug,
|
853 |
+
features=param.features,
|
854 |
+
f0_rotary=param.f0_rotary,
|
855 |
+
)
|
856 |
+
|
857 |
+
all_head = torch.zeros(self.param.text_idx, self.param.text_head, dtype=torch.bool)
|
858 |
+
all_head[self.param.text_idx // 2 :] = True
|
859 |
+
self.register_buffer("alignment_head", all_head.to_sparse(), persistent=False)
|
860 |
+
|
861 |
+
def set_alignment_head(self, dump: bytes):
|
862 |
+
array = np.frombuffer(
|
863 |
+
gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()
|
864 |
+
mask = torch.from_numpy(array).reshape(
|
865 |
+
self.param.text_idx, self.param.text_head)
|
866 |
+
self.register_buffer("alignment_head", mask.to_sparse(), persistent=False)
|
867 |
+
|
868 |
+
def embed_audio(self, spectrogram: torch.Tensor):
|
869 |
+
return self.encoder(spectrogram)
|
870 |
+
|
871 |
+
def logits(self,input_ids: torch.Tensor, encoder_output: torch.Tensor):
|
872 |
+
return self.decoder(input_ids, encoder_output)
|
873 |
+
|
874 |
+
def forward(self,
|
875 |
+
decoder_input_ids=None,
|
876 |
+
labels=None,
|
877 |
+
waveform: Optional[torch.Tensor]=None,
|
878 |
+
input_ids=None,
|
879 |
+
spectrogram: torch.Tensor=None,
|
880 |
+
pitch: Optional[torch.Tensor]=None,
|
881 |
+
f0: Optional[torch.Tensor]=None,
|
882 |
+
envelope: Optional[torch.Tensor]=None,
|
883 |
+
phase: Optional[torch.Tensor]=None,
|
884 |
+
) -> Dict[str, torch.Tensor]:
|
885 |
+
|
886 |
+
decoder_input_ids = input_ids
|
887 |
+
encoder_inputs = {}
|
888 |
+
if spectrogram is not None:
|
889 |
+
encoder_inputs["spectrogram"] = spectrogram
|
890 |
+
if waveform is not None:
|
891 |
+
encoder_inputs["waveform"] = waveform
|
892 |
+
if pitch is not None:
|
893 |
+
encoder_inputs["pitch"] = pitch
|
894 |
+
if envelope is not None:
|
895 |
+
encoder_inputs["envelope"] = envelope
|
896 |
+
if phase is not None:
|
897 |
+
encoder_inputs["phase"] = phase
|
898 |
+
|
899 |
+
encoder_outputs = self.encoder(encoder_inputs, f0=f0)
|
900 |
+
logits = self.decoder(input_ids, encoder_outputs, f0=f0)
|
901 |
+
|
902 |
+
loss = None
|
903 |
+
if labels is not None:
|
904 |
+
loss = F.cross_entropy(
|
905 |
+
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
|
906 |
+
|
907 |
+
return {
|
908 |
+
"logits": logits,
|
909 |
+
"loss": loss,
|
910 |
+
"labels": labels,
|
911 |
+
"input_ids": input_ids,
|
912 |
+
"decoder_input_ids": decoder_input_ids,
|
913 |
+
"encoder_output": encoder_outputs
|
914 |
+
}
|
915 |
+
|
916 |
+
def device(self):
|
917 |
+
return next(self.parameters()).device
|
918 |
+
@property
|
919 |
+
def dtype(self):
|
920 |
+
return next(self.parameters()).dtype
|
921 |
+
|
922 |
+
def _init_weights(self, module):
|
923 |
+
std = 0.02
|
924 |
+
self.init_counts = {
|
925 |
+
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
|
926 |
+
"Conv2d": 0, "SEBlock": 0, "TextDecoder": 0, "AudioEncoder": 0,
|
927 |
+
"Residual": 0, "MultiheadA": 0, "MultiheadB - Cross Attention": 0,
|
928 |
+
"MultiheadC": 0, "MultiheadD": 0, "FEncoder": 0,
|
929 |
+
"WEncoder": 0, "PEncoder": 0}
|
930 |
+
|
931 |
+
for module in self.named_modules():
|
932 |
+
if isinstance(module, Linear):
|
933 |
+
nn.init.xavier_uniform_(module.weight)
|
934 |
+
if module.bias is not None:
|
935 |
+
nn.init.zeros_(module.bias)
|
936 |
+
self.init_counts["Linear"] += 1
|
937 |
+
elif isinstance(module, Conv1d):
|
938 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
939 |
+
if module.bias is not None:
|
940 |
+
nn.init.zeros_(module.bias)
|
941 |
+
self.init_counts["Conv1d"] += 1
|
942 |
+
|
943 |
+
elif isinstance(module, RMSNorm):
|
944 |
+
nn.init.ones_(module.weight)
|
945 |
+
self.init_counts["RMSNorm"] += 1
|
946 |
+
elif isinstance(module, MultiheadA):
|
947 |
+
self.init_counts["MultiheadA"] += 1
|
948 |
+
elif isinstance(module, Conv2d):
|
949 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
950 |
+
if module.bias is not None:
|
951 |
+
nn.init.zeros_(module.bias)
|
952 |
+
self.init_counts["Conv2d"] += 1
|
953 |
+
|
954 |
+
elif isinstance(module, TextDecoder):
|
955 |
+
self.init_counts["TextDecoder"] += 1
|
956 |
+
elif isinstance(module, AudioEncoder):
|
957 |
+
self.init_counts["AudioEncoder"] += 1
|
958 |
+
elif isinstance(module, Residual):
|
959 |
+
self.init_counts["Residual"] += 1
|
960 |
+
|
961 |
+
def init_weights(self):
|
962 |
+
print("Initializing all weights")
|
963 |
+
self.apply(self._init_weights)
|
964 |
+
print("Initialization summary:")
|
965 |
+
for module_type, count in self.init_counts.items():
|
966 |
+
if count > 0:
|
967 |
+
print(f"{module_type}: {count}")
|
968 |
+
|
969 |
+
metric = evaluate.load(path="wer")
|
970 |
+
|
971 |
+
@dataclass
|
972 |
+
class DataCollator:
|
973 |
+
tokenizer: Any
|
974 |
+
def __call__(self, features: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
|
975 |
+
pad_token_id = tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else 0
|
976 |
+
bos_token_id = tokenizer.bos_token_id if hasattr(tokenizer, 'bos_token_id') else 1
|
977 |
+
|
978 |
+
batch = {}
|
979 |
+
|
980 |
+
if "spectrogram" in features[0] and features[0]["spectrogram"] is not None:
|
981 |
+
spectrogram_list = [f["spectrogram"] for f in features]
|
982 |
+
max_len_feat = max(f.shape[-1] for f in spectrogram_list)
|
983 |
+
pad_spectrogram = []
|
984 |
+
for feat in spectrogram_list:
|
985 |
+
current_len = feat.shape[-1]
|
986 |
+
padding = max_len_feat - current_len
|
987 |
+
if padding > 0:
|
988 |
+
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
989 |
+
else:
|
990 |
+
pad_feat = feat
|
991 |
+
pad_spectrogram.append(pad_feat)
|
992 |
+
batch["spectrogram"] = torch.stack(pad_spectrogram)
|
993 |
+
|
994 |
+
if "waveform" in features[0] and features[0]["waveform"] is not None:
|
995 |
+
waveform_list = [f["waveform"] for f in features]
|
996 |
+
max_len_wav = max(w.shape[-1] for w in waveform_list)
|
997 |
+
pad_waveforms = []
|
998 |
+
for wav in waveform_list:
|
999 |
+
current_len = wav.shape[-1]
|
1000 |
+
padding = max_len_wav - current_len
|
1001 |
+
if padding > 0:
|
1002 |
+
if wav.ndim == 1:
|
1003 |
+
wav = wav.unsqueeze(0)
|
1004 |
+
pad_wav = F.pad(wav, (0, padding), mode='constant', value=pad_token_id)
|
1005 |
+
else:
|
1006 |
+
pad_wav = wav
|
1007 |
+
pad_waveforms.append(pad_wav)
|
1008 |
+
batch["waveform"] = torch.stack(pad_waveforms)
|
1009 |
+
|
1010 |
+
if "label" in features[0] and features[0]["label"] is not None:
|
1011 |
+
labels_list = [f["label"] for f in features]
|
1012 |
+
max_len = max(len(l) for l in labels_list)
|
1013 |
+
all_ids = []
|
1014 |
+
all_labels = []
|
1015 |
+
|
1016 |
+
for label in labels_list:
|
1017 |
+
label_list = label.tolist() if isinstance(label, torch.Tensor) else label
|
1018 |
+
decoder_input = [bos_token_id] + label_list
|
1019 |
+
label_eos = label_list + [pad_token_id]
|
1020 |
+
input_len = max_len + 1 - len(decoder_input)
|
1021 |
+
label_len = max_len + 1 - len(label_eos)
|
1022 |
+
padded_input = decoder_input + [pad_token_id] * input_len
|
1023 |
+
padded_labels = label_eos + [pad_token_id] * label_len
|
1024 |
+
all_ids.append(padded_input)
|
1025 |
+
all_labels.append(padded_labels)
|
1026 |
+
batch["input_ids"] = torch.tensor(all_ids, dtype=torch.long)
|
1027 |
+
batch["labels"] = torch.tensor(all_labels, dtype=torch.long)
|
1028 |
+
|
1029 |
+
if "pitch" in features[0] and features[0]["pitch"] is not None:
|
1030 |
+
pitch_list = [f["pitch"] for f in features]
|
1031 |
+
max_len_pitch = max(e.shape[-1] for e in pitch_list)
|
1032 |
+
pad_pitch = []
|
1033 |
+
for pitch in pitch_list:
|
1034 |
+
current_len = pitch.shape[-1]
|
1035 |
+
padding = max_len_pitch - current_len
|
1036 |
+
if padding > 0:
|
1037 |
+
pad_pitch_item = F.pad(pitch, (0, padding), mode='constant', value=pad_token_id)
|
1038 |
+
else:
|
1039 |
+
pad_pitch_item = pitch
|
1040 |
+
pad_pitch.append(pad_pitch_item)
|
1041 |
+
batch["pitch"] = torch.stack(pad_pitch)
|
1042 |
+
|
1043 |
+
if "f0" in features[0] and features[0]["f0"] is not None:
|
1044 |
+
all_f0 = torch.cat([f["f0"] for f in features])
|
1045 |
+
batch["f0"] = all_f0.unsqueeze(0)
|
1046 |
+
|
1047 |
+
if "envelope" in features[0] and features[0]["envelope"] is not None:
|
1048 |
+
env_list = [f["envelope"] for f in features]
|
1049 |
+
max_len = max(f.shape[-1] for f in env_list)
|
1050 |
+
pad_env = []
|
1051 |
+
for feat in env_list:
|
1052 |
+
current_len = feat.shape[-1]
|
1053 |
+
padding = max_len_feat - current_len
|
1054 |
+
if padding > 0:
|
1055 |
+
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
1056 |
+
else:
|
1057 |
+
pad_feat = feat
|
1058 |
+
pad_env.append(pad_feat)
|
1059 |
+
batch["envelope"] = torch.stack(pad_env)
|
1060 |
+
|
1061 |
+
if "phase" in features[0] and features[0]["phase"] is not None:
|
1062 |
+
ph_list = [f["phase"] for f in features]
|
1063 |
+
max_len = max(f.shape[-1] for f in ph_list)
|
1064 |
+
pad_ph = []
|
1065 |
+
for feat in ph_list:
|
1066 |
+
current_len = feat.shape[-1]
|
1067 |
+
padding = max_len_feat - current_len
|
1068 |
+
if padding > 0:
|
1069 |
+
pad_feat = F.pad(feat, (0, padding), mode='constant', value=pad_token_id)
|
1070 |
+
else:
|
1071 |
+
pad_feat = feat
|
1072 |
+
pad_ph.append(pad_feat)
|
1073 |
+
batch["phase"] = torch.stack(pad_ph)
|
1074 |
+
return batch
|
1075 |
+
|
1076 |
+
def hilbert_transform(x):
|
1077 |
+
N = x.shape[-1]
|
1078 |
+
xf = torch.fft.rfft(x)
|
1079 |
+
h = torch.zeros(N // 2 + 1, device=x.device, dtype=x.dtype)
|
1080 |
+
if N % 2 == 0:
|
1081 |
+
h[0] = h[N//2] = 1
|
1082 |
+
h[1:N//2] = 2
|
1083 |
+
else:
|
1084 |
+
h[0] = 1
|
1085 |
+
h[1:(N+1)//2] = 2
|
1086 |
+
return torch.fft.irfft(xf * h, n=N)
|
1087 |
+
|
1088 |
+
def analytic_signal(x):
|
1089 |
+
return x + 1j * hilbert_transform(x)
|
1090 |
+
|
1091 |
+
def hilbert_transform_2d(x, dim=-1):
|
1092 |
+
N = x.shape[dim]
|
1093 |
+
if dim == -1 or dim == len(x.shape) - 1:
|
1094 |
+
xf = torch.fft.rfft(x)
|
1095 |
+
else:
|
1096 |
+
xf = torch.fft.rfft(x, dim=dim)
|
1097 |
+
h_shape = [1] * len(x.shape)
|
1098 |
+
h_shape[dim] = N // 2 + 1
|
1099 |
+
h = torch.zeros(h_shape, device=x.device, dtype=x.dtype)
|
1100 |
+
if dim == -1 or dim == len(x.shape) - 1:
|
1101 |
+
if N % 2 == 0:
|
1102 |
+
h[..., 0] = h[..., -1] = 1
|
1103 |
+
h[..., 1:-1] = 2
|
1104 |
+
else:
|
1105 |
+
h[..., 0] = 1
|
1106 |
+
h[..., 1:] = 2
|
1107 |
+
else:
|
1108 |
+
pass
|
1109 |
+
return torch.fft.irfft(xf * h, n=N, dim=dim)
|
1110 |
+
|
1111 |
+
def hilbert_transform_true_2d(x):
|
1112 |
+
xf = torch.fft.rfft2(x)
|
1113 |
+
h1, h2 = torch.meshgrid(
|
1114 |
+
torch.fft.rfftfreq(x.shape[-2]) * 2 - 1,
|
1115 |
+
torch.fft.rfftfreq(x.shape[-1]) * 2 - 1,
|
1116 |
+
indexing='ij')
|
1117 |
+
h = -1j / (math.pi * (h1 + 1j*h2))
|
1118 |
+
h[0, 0] = 0
|
1119 |
+
return torch.fft.irfft2(xf * h.to(x.device))
|
1120 |
+
|
1121 |
+
def process_spectrogram_with_hilbert(spec):
|
1122 |
+
analytic = spec + 1j * hilbert_transform(spec)
|
1123 |
+
envelope = torch.abs(analytic)
|
1124 |
+
phase = torch.angle(analytic)
|
1125 |
+
return envelope, phase
|
1126 |
+
|
1127 |
+
def extract_features(batch, tokenizer, spectrogram, waveforms, pitch, f0=False,
|
1128 |
+
hop_length=128, fmin=0, fmax=8000, n_mels=128, n_fft=1024, sampling_rate=16000,
|
1129 |
+
pad_mode="constant", center=True, power=2.0, window_fn=torch.hann_window, mel_scale="htk",
|
1130 |
+
norm=None, normalized=False, downsamples=False, period=False, hilbert=False):
|
1131 |
+
|
1132 |
+
dtype = torch.float32
|
1133 |
+
device = torch.device("cuda:0")
|
1134 |
+
audio = batch["audio"]
|
1135 |
+
sampling_rate = audio["sampling_rate"]
|
1136 |
+
|
1137 |
+
wav = torch.tensor(audio["array"]).float()
|
1138 |
+
sr = audio["sampling_rate"]
|
1139 |
+
|
1140 |
+
if sr != sampling_rate:
|
1141 |
+
original_length = wav.shape[-1]
|
1142 |
+
target_length = int(original_length * (sampling_rate / sr))
|
1143 |
+
|
1144 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sampling_rate)
|
1145 |
+
wav = resampler(wav)
|
1146 |
+
|
1147 |
+
if abs(wav.shape[-1] - target_length) > 1:
|
1148 |
+
new_waveform = torch.zeros((wav.shape[0], target_length), dtype=dtype, device=device)
|
1149 |
+
copy_length = min(wav.shape[1], target_length)
|
1150 |
+
new_waveform[:, :copy_length] = wav[:, :copy_length]
|
1151 |
+
wav = new_waveform
|
1152 |
+
|
1153 |
+
if spectrogram:
|
1154 |
+
transform = torchaudio.transforms.MelSpectrogram(
|
1155 |
+
f_max=fmax,
|
1156 |
+
f_min=fmin,
|
1157 |
+
n_mels=n_mels,
|
1158 |
+
sample_rate=sr,
|
1159 |
+
n_fft=n_fft,
|
1160 |
+
hop_length=hop_length,
|
1161 |
+
norm=norm,
|
1162 |
+
normalized=normalized,
|
1163 |
+
power=power,
|
1164 |
+
center=center,
|
1165 |
+
mel_scale=mel_scale,
|
1166 |
+
window_fn=window_fn,
|
1167 |
+
pad_mode=pad_mode)
|
1168 |
+
|
1169 |
+
mel_spectrogram = transform(wav)
|
1170 |
+
log_mel = torch.clamp(mel_spectrogram, min=1e-10).log10()
|
1171 |
+
log_mel = torch.maximum(log_mel, log_mel.max() - 8.0)
|
1172 |
+
spec = (log_mel + 4.0) / 4.0
|
1173 |
+
spec = torch.tensor(spec)
|
1174 |
+
batch["spectrogram"] = spec
|
1175 |
+
|
1176 |
+
if hilbert:
|
1177 |
+
envelope_list = []
|
1178 |
+
phase_list = []
|
1179 |
+
|
1180 |
+
for ch_idx in range(spec.shape[0]):
|
1181 |
+
envelope, phase = process_spectrogram_with_hilbert(spec[ch_idx])
|
1182 |
+
envelope_list.append(envelope)
|
1183 |
+
phase_list.append(phase)
|
1184 |
+
|
1185 |
+
batch["envelope"] = torch.stack(envelope_list)
|
1186 |
+
batch["phase"] = torch.stack(phase_list)
|
1187 |
+
|
1188 |
+
wav_1d = wav.unsqueeze(0)
|
1189 |
+
|
1190 |
+
if waveforms:
|
1191 |
+
batch["waveform"] = wav_1d
|
1192 |
+
|
1193 |
+
if pitch:
|
1194 |
+
if period:
|
1195 |
+
pit, periodocity = torchcrepe.predict(
|
1196 |
+
wav_1d,
|
1197 |
+
sampling_rate,
|
1198 |
+
hop_length,
|
1199 |
+
fmin=80,
|
1200 |
+
fmax=800,
|
1201 |
+
model="tiny",
|
1202 |
+
decoder=torchcrepe.decode.viterbi,
|
1203 |
+
return_periodicity=True,
|
1204 |
+
device=device,
|
1205 |
+
pad=True
|
1206 |
+
)
|
1207 |
+
batch["pitch"] = pit
|
1208 |
+
batch["period"] = periodocity
|
1209 |
+
else:
|
1210 |
+
pit = torchcrepe.predict(
|
1211 |
+
wav_1d,
|
1212 |
+
sampling_rate,
|
1213 |
+
hop_length,
|
1214 |
+
fmin=80,
|
1215 |
+
fmax=800,
|
1216 |
+
model="tiny",
|
1217 |
+
decoder=torchcrepe.decode.viterbi,
|
1218 |
+
return_periodicity=False,
|
1219 |
+
device=device,
|
1220 |
+
pad=True
|
1221 |
+
)
|
1222 |
+
batch["pitch"] = pit
|
1223 |
+
|
1224 |
+
if f0:
|
1225 |
+
wav_np = wav.numpy().astype(np.float64)
|
1226 |
+
f0, t = pw.dio(wav_np, sampling_rate,
|
1227 |
+
frame_period=hop_length/sampling_rate*1000)
|
1228 |
+
f0 = pw.stonemask(wav_np, f0, t, sampling_rate)
|
1229 |
+
batch["f0"] = torch.from_numpy(f0).float()
|
1230 |
+
|
1231 |
+
if spectrogram and waveforms and pitch:
|
1232 |
+
spec_mean = batch["spectrogram"].mean()
|
1233 |
+
spec_std = batch["spectrogram"].std() + 1e-6
|
1234 |
+
batch["spectrogram"] = (batch["spectrogram"] - spec_mean) / spec_std
|
1235 |
+
|
1236 |
+
wav_mean = batch["waveform"].mean()
|
1237 |
+
wav_std = batch["waveform"].std() + 1e-6
|
1238 |
+
batch["waveform"] = (batch["waveform"] - wav_mean) / wav_std
|
1239 |
+
|
1240 |
+
if batch["pitch"].max() > 1.0:
|
1241 |
+
pitch_min = 50.0
|
1242 |
+
pitch_max = 600.0
|
1243 |
+
batch["pitch"] = (batch["pitch"] - pitch_min) / (pitch_max - pitch_min)
|
1244 |
+
|
1245 |
+
batch["label"] = tokenizer.encode(batch["transcription"], add_special_tokens=False)
|
1246 |
+
return batch
|
1247 |
+
|
1248 |
+
def compute_metrics(eval_pred, compute_result: bool = True,
|
1249 |
+
print_pred: bool = False, num_samples: int = 0, tokenizer=None, pitch=None, model=None):
|
1250 |
+
|
1251 |
+
pred_logits = eval_pred.predictions
|
1252 |
+
label_ids = eval_pred.label_ids
|
1253 |
+
|
1254 |
+
if hasattr(pred_logits, "cpu"):
|
1255 |
+
pred_logits = pred_logits.cpu()
|
1256 |
+
if hasattr(label_ids, "cpu"):
|
1257 |
+
label_ids = label_ids.cpu()
|
1258 |
+
if isinstance(pred_logits, tuple):
|
1259 |
+
pred_ids = pred_logits[0]
|
1260 |
+
else:
|
1261 |
+
pred_ids = pred_logits
|
1262 |
+
if hasattr(pred_ids, "ndim") and pred_ids.ndim == 3:
|
1263 |
+
if not isinstance(pred_ids, torch.Tensor):
|
1264 |
+
pred_ids = torch.tensor(pred_ids)
|
1265 |
+
pred_ids = pred_ids.argmax(dim=-1)
|
1266 |
+
pred_ids = pred_ids.tolist()
|
1267 |
+
|
1268 |
+
if hasattr(label_ids, "tolist"):
|
1269 |
+
label_ids = label_ids.tolist()
|
1270 |
+
|
1271 |
+
label_ids = [[0 if token == -100 else token for token in seq] for seq in label_ids]
|
1272 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
|
1273 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
|
1274 |
+
|
1275 |
+
if print_pred:
|
1276 |
+
for i in range(min(num_samples, len(pred_str))):
|
1277 |
+
print(f"Preds: {pred_str[i]}")
|
1278 |
+
print(f"Label: {label_str[i]}")
|
1279 |
+
print(f"preds: {pred_ids[i]}")
|
1280 |
+
print(f"label: {label_ids[i]}")
|
1281 |
+
print("--------------------------------")
|
1282 |
+
|
1283 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
1284 |
+
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
1285 |
+
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1286 |
+
|
1287 |
+
if model is None:
|
1288 |
+
global global_model
|
1289 |
+
if 'global_model' in globals():
|
1290 |
+
model = global_model
|
1291 |
+
|
1292 |
+
if model is not None:
|
1293 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
|
1294 |
+
if trainable_params > 0:
|
1295 |
+
efficiency_score = (100 - wer) / trainable_params
|
1296 |
+
else:
|
1297 |
+
print("Warning: Zero trainable parameters detected")
|
1298 |
+
efficiency_score = 0.0
|
1299 |
+
else:
|
1300 |
+
print("Warning: Model not available for parameter counting")
|
1301 |
+
trainable_params = 0.0
|
1302 |
+
efficiency_score = 0.0
|
1303 |
+
|
1304 |
+
if hasattr(wer, "item"):
|
1305 |
+
wer = wer.item()
|
1306 |
+
|
1307 |
+
metrics = {
|
1308 |
+
"wer": float(wer),
|
1309 |
+
"trainable_params_M": float(trainable_params),
|
1310 |
+
"efficiency_score": float(efficiency_score),
|
1311 |
+
}
|
1312 |
+
|
1313 |
+
print(f"Computed metrics: WER={wer:.2f}%, Params={trainable_params:.2f}M, Efficiency={efficiency_score:.4f}")
|
1314 |
+
return metrics
|
1315 |
+
|
1316 |
+
logger = logging.getLogger(__name__)
|
1317 |
+
|
1318 |
+
def create_model(param: Dimensions) -> Echo:
|
1319 |
+
model = Echo(param).to('cuda')
|
1320 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
1321 |
+
total_params = sum(p.numel() for p in model.parameters())
|
1322 |
+
logger.info(f"Trainable parameters: {trainable_params:,}")
|
1323 |
+
logger.info(f"Total parameters: {total_params:,}")
|
1324 |
+
print(f"Trainable parameters: {trainable_params:,}")
|
1325 |
+
print(f"Total parameters: {total_params:,}")
|
1326 |
+
model.init_weights()
|
1327 |
+
return model
|
1328 |
+
|
1329 |
+
def setup_tokenizer(token: str, local_tokenizer_path: str = "D:/newmodel/model/tokenn/"):
|
1330 |
+
from tokenizers import Tokenizer
|
1331 |
+
tokenizer = Tokenizer.from_file(f"{local_tokenizer_path}/tokenizer.json")
|
1332 |
+
orig_encode = tokenizer.encode
|
1333 |
+
def enc(text, add_special_tokens=True):
|
1334 |
+
ids = orig_encode(text).ids
|
1335 |
+
if not add_special_tokens:
|
1336 |
+
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
|
1337 |
+
ids = [id for id in ids if id not in sp_ids]
|
1338 |
+
return ids
|
1339 |
+
def bdec(ids_list, skip_special_tokens=True):
|
1340 |
+
results = []
|
1341 |
+
for ids in ids_list:
|
1342 |
+
if skip_special_tokens:
|
1343 |
+
ids = [id for id in ids if id not in [0, 1, 2]]
|
1344 |
+
results.append(tokenizer.decode(ids))
|
1345 |
+
return results
|
1346 |
+
def save_pretrained(save_dir):
|
1347 |
+
os.makedirs(save_dir, exist_ok=True)
|
1348 |
+
tokenizer.save(f"{save_dir}/tokenizer.json")
|
1349 |
+
tokenizer.encode = enc
|
1350 |
+
tokenizer.batch_decode = bdec
|
1351 |
+
tokenizer.save_pretrained = save_pretrained
|
1352 |
+
tokenizer.pad_token_id = 0
|
1353 |
+
tokenizer.bos_token_id = 1
|
1354 |
+
tokenizer.eos_token_id = 2
|
1355 |
+
return tokenizer
|
1356 |
+
|
1357 |
+
def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_config: Optional[Dict] = None) -> Tuple[any, any]:
|
1358 |
+
if dataset_config is None:
|
1359 |
+
dataset_config = {
|
1360 |
+
"spectrogram": True,
|
1361 |
+
"waveforms": True,
|
1362 |
+
"pitch": True,
|
1363 |
+
"f0": True,
|
1364 |
+
"downsamples": True,
|
1365 |
+
"hop_length": 128,
|
1366 |
+
"fmin": 50,
|
1367 |
+
"fmax": 2000,
|
1368 |
+
"n_mels": 128,
|
1369 |
+
"n_fft": 1024,
|
1370 |
+
"sampling_rate": 16000,
|
1371 |
+
}
|
1372 |
+
|
1373 |
+
dataset = load_dataset(
|
1374 |
+
"google/fleurs",
|
1375 |
+
"en_us",
|
1376 |
+
token=token,
|
1377 |
+
trust_remote_code=True,
|
1378 |
+
streaming=False
|
1379 |
+
)
|
1380 |
+
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000))
|
1381 |
+
|
1382 |
+
if sanity_check:
|
1383 |
+
dataset = dataset["test"].take(10).shuffle()
|
1384 |
+
dataset = dataset.select_columns(["audio", "transcription"])
|
1385 |
+
logger.info(f"Sanity dataset size: {dataset.num_rows}")
|
1386 |
+
print(f"Sanity dataset size: {dataset.num_rows}")
|
1387 |
+
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1388 |
+
|
1389 |
+
dataset = dataset.map(
|
1390 |
+
function=prepare_fn,
|
1391 |
+
remove_columns=["audio", "transcription"]
|
1392 |
+
).with_format(type="torch")
|
1393 |
+
train_dataset = dataset
|
1394 |
+
test_dataset = dataset
|
1395 |
+
else:
|
1396 |
+
def filter_func(x):
|
1397 |
+
return (0 < len(x["transcription"]) < 512 and
|
1398 |
+
len(x["audio"]["array"]) > 0 and
|
1399 |
+
len(x["audio"]["array"]) < 1500 * 160)
|
1400 |
+
|
1401 |
+
dataset = dataset.filter(filter_func).shuffle()
|
1402 |
+
logger.info(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
|
1403 |
+
print(f"Dataset size: {dataset['train'].num_rows}, {dataset['test'].num_rows}")
|
1404 |
+
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1405 |
+
train_dataset = dataset["train"]
|
1406 |
+
test_dataset = dataset["test"]
|
1407 |
+
columns_to_remove = list(next(iter(dataset.values())).features)
|
1408 |
+
|
1409 |
+
train_dataset = train_dataset.map(
|
1410 |
+
function=prepare_fn,
|
1411 |
+
remove_columns=columns_to_remove
|
1412 |
+
).with_format(type="torch")
|
1413 |
+
|
1414 |
+
test_dataset = test_dataset.map(
|
1415 |
+
function=prepare_fn,
|
1416 |
+
remove_columns=columns_to_remove
|
1417 |
+
).with_format(type="torch")
|
1418 |
+
|
1419 |
+
return train_dataset, test_dataset
|
1420 |
+
|
1421 |
+
def get_training_args(
|
1422 |
+
log_dir: str,
|
1423 |
+
batch_eval_metrics: bool = False,
|
1424 |
+
max_steps: int = 10,
|
1425 |
+
save_steps: int = 1000,
|
1426 |
+
eval_steps: int = 100,
|
1427 |
+
warmup_steps: int = 0,
|
1428 |
+
num_train_epochs: int = 1,
|
1429 |
+
logging_steps: int = 10,
|
1430 |
+
eval_on_start: bool = False,
|
1431 |
+
learning_rate: float = 1e-4,
|
1432 |
+
weight_decay: float = 0.01,
|
1433 |
+
max_grad_norm: float = 1.0,
|
1434 |
+
) -> Seq2SeqTrainingArguments:
|
1435 |
+
|
1436 |
+
return Seq2SeqTrainingArguments(
|
1437 |
+
output_dir=log_dir,
|
1438 |
+
per_device_train_batch_size=1,
|
1439 |
+
per_device_eval_batch_size=1,
|
1440 |
+
gradient_accumulation_steps=1,
|
1441 |
+
eval_accumulation_steps=1,
|
1442 |
+
tf32=True,
|
1443 |
+
bf16=True,
|
1444 |
+
eval_strategy="steps",
|
1445 |
+
save_strategy="steps",
|
1446 |
+
max_steps=max_steps,
|
1447 |
+
save_steps=save_steps,
|
1448 |
+
eval_steps=eval_steps,
|
1449 |
+
warmup_steps=warmup_steps,
|
1450 |
+
num_train_epochs=num_train_epochs,
|
1451 |
+
logging_steps=logging_steps,
|
1452 |
+
logging_dir=log_dir,
|
1453 |
+
logging_strategy="steps",
|
1454 |
+
report_to=["tensorboard"],
|
1455 |
+
push_to_hub=False,
|
1456 |
+
disable_tqdm=False,
|
1457 |
+
save_total_limit=1,
|
1458 |
+
label_names=["labels"],
|
1459 |
+
optim="adamw_torch",
|
1460 |
+
lr_scheduler_type="cosine",
|
1461 |
+
learning_rate=learning_rate,
|
1462 |
+
weight_decay=weight_decay,
|
1463 |
+
save_safetensors=False,
|
1464 |
+
eval_on_start=eval_on_start,
|
1465 |
+
batch_eval_metrics=batch_eval_metrics,
|
1466 |
+
max_grad_norm=max_grad_norm,
|
1467 |
+
|
1468 |
+
)
|
1469 |
+
|
1470 |
+
def main():
|
1471 |
+
|
1472 |
+
token = ""
|
1473 |
+
log_dir = os.path.join('./output/logs', datetime.now().strftime(format='%m-%d_%H'))
|
1474 |
+
os.makedirs(name=log_dir, exist_ok=True)
|
1475 |
+
tokenizer = setup_tokenizer(token)
|
1476 |
+
|
1477 |
+
def sanity(sanity: bool):
|
1478 |
+
|
1479 |
+
if sanity:
|
1480 |
+
training_args = get_training_args(
|
1481 |
+
log_dir,
|
1482 |
+
batch_eval_metrics = False,
|
1483 |
+
max_steps = 10,
|
1484 |
+
save_steps = 0,
|
1485 |
+
eval_steps = 1,
|
1486 |
+
warmup_steps = 0,
|
1487 |
+
logging_steps = 1,
|
1488 |
+
eval_on_start = True,
|
1489 |
+
learning_rate = 5e-6,
|
1490 |
+
weight_decay = 0.01,
|
1491 |
+
)
|
1492 |
+
else:
|
1493 |
+
training_args = get_training_args(
|
1494 |
+
log_dir,
|
1495 |
+
batch_eval_metrics = False,
|
1496 |
+
max_steps = 10000,
|
1497 |
+
save_steps = 10000,
|
1498 |
+
eval_steps = 1000,
|
1499 |
+
warmup_steps = 1000,
|
1500 |
+
logging_steps = 100,
|
1501 |
+
eval_on_start = False,
|
1502 |
+
learning_rate = 2.5e-4,
|
1503 |
+
weight_decay = 0.01,
|
1504 |
+
)
|
1505 |
+
|
1506 |
+
return training_args
|
1507 |
+
|
1508 |
+
param = Dimensions(
|
1509 |
+
mels=128,
|
1510 |
+
aud_ctx=1500,
|
1511 |
+
aud_head=4,
|
1512 |
+
aud_dims=512,
|
1513 |
+
aud_idx=4,
|
1514 |
+
vocab=40000,
|
1515 |
+
text_ctx=512,
|
1516 |
+
text_head=4,
|
1517 |
+
text_dims=512,
|
1518 |
+
text_idx=4,
|
1519 |
+
act="swish",
|
1520 |
+
debug={},
|
1521 |
+
cross_attn=True,
|
1522 |
+
f0_rotary=True,
|
1523 |
+
features = ["spectrogram"],
|
1524 |
+
)
|
1525 |
+
|
1526 |
+
sanity_check = False
|
1527 |
+
|
1528 |
+
training_args = sanity(sanity_check)
|
1529 |
+
|
1530 |
+
dataset_config = {
|
1531 |
+
"spectrogram": True,
|
1532 |
+
"waveforms": False,
|
1533 |
+
"pitch": False,
|
1534 |
+
"downsamples": False,
|
1535 |
+
"f0": True,
|
1536 |
+
"hilbert": False,
|
1537 |
+
"hop_length": 128,
|
1538 |
+
"fmin": 150,
|
1539 |
+
"fmax": 2000,
|
1540 |
+
"n_mels": 128,
|
1541 |
+
"n_fft": 1024,
|
1542 |
+
"sampling_rate": 16000,
|
1543 |
+
"pad_mode": "constant",
|
1544 |
+
"center": True,
|
1545 |
+
"power": 2.0,
|
1546 |
+
"window_fn": torch.hann_window,
|
1547 |
+
"mel_scale": "htk",
|
1548 |
+
"norm": None,
|
1549 |
+
"normalized": False}
|
1550 |
+
|
1551 |
+
model = create_model(param)
|
1552 |
+
|
1553 |
+
global global_model
|
1554 |
+
global_model = model
|
1555 |
+
|
1556 |
+
metrics_fn = partial(compute_metrics, print_pred=False, num_samples=5,
|
1557 |
+
tokenizer=tokenizer, model=model)
|
1558 |
+
|
1559 |
+
print(f"{'Sanity check' if sanity_check else 'Training'} mode")
|
1560 |
+
train_dataset, test_dataset = prepare_datasets(
|
1561 |
+
tokenizer=tokenizer,
|
1562 |
+
token=token,
|
1563 |
+
sanity_check=sanity_check,
|
1564 |
+
dataset_config=dataset_config)
|
1565 |
+
|
1566 |
+
|
1567 |
+
trainer = Seq2SeqTrainer(
|
1568 |
+
args=training_args,
|
1569 |
+
model=model,
|
1570 |
+
train_dataset=train_dataset,
|
1571 |
+
eval_dataset=test_dataset,
|
1572 |
+
data_collator=DataCollator(tokenizer=tokenizer),
|
1573 |
+
compute_metrics=metrics_fn,
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
trainer.train()
|
1577 |
+
|
1578 |
+
if __name__ == "__main__":
|
1579 |
+
main()
|
1580 |
+
|
1581 |
+
|