Create model_simple.py
Browse files- model_simple.py +448 -0
model_simple.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
import logging
|
5 |
+
from itertools import chain
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as feature
|
8 |
+
from torch import nn, Tensor
|
9 |
+
from tensordict import TensorDict
|
10 |
+
from typing import Optional, Dict, Union, List, Tuple
|
11 |
+
import numpy as np
|
12 |
+
from functools import partial
|
13 |
+
from datetime import datetime
|
14 |
+
from tensordict import TensorDict
|
15 |
+
from transformers.trainer_seq2seq import Seq2SeqTrainer
|
16 |
+
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
17 |
+
from echoutils import *
|
18 |
+
|
19 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20 |
+
dtype = torch.float32
|
21 |
+
warnings.filterwarnings("ignore")
|
22 |
+
logging.basicConfig(level=logging.ERROR)
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class Dimensions:
|
26 |
+
vocab: int
|
27 |
+
mels: int
|
28 |
+
ctx: int
|
29 |
+
dims: int
|
30 |
+
head: int
|
31 |
+
layer: int
|
32 |
+
act: str
|
33 |
+
|
34 |
+
class rotary(nn.Module):
|
35 |
+
def __init__(self, dims, head):
|
36 |
+
super(rotary, self).__init__()
|
37 |
+
self.dims = dims
|
38 |
+
self.head = head
|
39 |
+
self.head_dim = dims // head
|
40 |
+
self.theta = nn.Parameter((torch.tensor(36000, device=device, dtype=dtype)), requires_grad=True)
|
41 |
+
|
42 |
+
def forward(self, x=None) -> Tensor:
|
43 |
+
freqs = (self.theta / 220.0) * 700 * (
|
44 |
+
torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 8000/700)),
|
45 |
+
self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1) / 1000
|
46 |
+
t = torch.arange(x, device=device, dtype=dtype) # type: ignore
|
47 |
+
freqs = t[:, None] * freqs
|
48 |
+
freqs=torch.polar(torch.ones_like(freqs), freqs)
|
49 |
+
return freqs.unsqueeze(0)
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def apply_rotary(x, freqs):
|
53 |
+
x1 = x[..., :freqs.shape[-1]*2]
|
54 |
+
x2 = x[..., freqs.shape[-1]*2:]
|
55 |
+
orig_shape = x1.shape
|
56 |
+
if x1.ndim == 2:
|
57 |
+
x1 = x1.unsqueeze(0)
|
58 |
+
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
|
59 |
+
x1 = torch.view_as_complex(x1) * freqs
|
60 |
+
x1 = torch.view_as_real(x1).flatten(-2)
|
61 |
+
x1 = x1.view(orig_shape)
|
62 |
+
return torch.cat([x1.type_as(x), x2], dim=-1)
|
63 |
+
|
64 |
+
class MultiheadA(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, dims: int, head: int, debug: List[str] = []):
|
67 |
+
super(MultiheadA, self).__init__()
|
68 |
+
|
69 |
+
self.dims = dims
|
70 |
+
self.head = head
|
71 |
+
self.head_dim = dims // head
|
72 |
+
self.debug = debug
|
73 |
+
|
74 |
+
self.q = nn.Linear(dims, dims).to(device, dtype)
|
75 |
+
self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
|
76 |
+
self.v = nn.Linear(dims, dims).to(device, dtype)
|
77 |
+
self.o = nn.Linear(dims, dims).to(device, dtype)
|
78 |
+
self.rope = rotary(dims=dims, head=head)
|
79 |
+
|
80 |
+
def forward(self, x: Tensor, xa = None, mask = None):
|
81 |
+
scale = (self.dims // self.head) ** -0.25
|
82 |
+
q = self.q(x)
|
83 |
+
k = self.k(x if xa is None else xa)
|
84 |
+
v = self.v(x if xa is None else xa)
|
85 |
+
batch, ctx, dims = q.shape
|
86 |
+
q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
87 |
+
k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
88 |
+
v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)
|
89 |
+
q = self.rope.apply_rotary(q, (self.rope(q.shape[2]))) # type: ignore
|
90 |
+
k = self.rope.apply_rotary(k, (self.rope(k.shape[2]))) # type: ignore
|
91 |
+
a = scaled_dot_product_attention(q, k, v, is_causal=mask is not None and ctx > 1)
|
92 |
+
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
|
93 |
+
qk = None
|
94 |
+
return self.o(out), qk
|
95 |
+
|
96 |
+
class t_gate(nn.Module):
|
97 |
+
def __init__(self, dims, num_types=4):
|
98 |
+
super().__init__()
|
99 |
+
self.gate_projections = nn.ModuleList([
|
100 |
+
nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
101 |
+
for _ in range(num_types)])
|
102 |
+
self.type_classifier = nn.Sequential(
|
103 |
+
Linear(dims, num_types),
|
104 |
+
nn.Softmax(dim=-1))
|
105 |
+
def forward(self, x):
|
106 |
+
type_probs = self.type_classifier(x)
|
107 |
+
gates = torch.stack([gate(x) for gate in self.gate_projections], dim=-1)
|
108 |
+
comb_gate = torch.sum(gates * type_probs.unsqueeze(2), dim=-1)
|
109 |
+
return comb_gate
|
110 |
+
|
111 |
+
class Residual(nn.Module):
|
112 |
+
_seen = set()
|
113 |
+
def __init__(self, dims: int, head: int, ctx: int, act: str = "silu"):
|
114 |
+
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
self.dims = dims
|
118 |
+
self.head = head
|
119 |
+
self.ctx = ctx
|
120 |
+
self.head_dim = dims // head
|
121 |
+
|
122 |
+
|
123 |
+
self.blend = nn.Parameter(torch.tensor(0.5))
|
124 |
+
act_fn = get_activation(act)
|
125 |
+
self.attn = MultiheadA(dims, head)
|
126 |
+
mlp = dims * 4
|
127 |
+
self.mlp = nn.Sequential(Linear(dims, mlp), act_fn, Linear(mlp, dims))
|
128 |
+
self.t_gate = t_gate(dims=dims, num_types=4*2)
|
129 |
+
|
130 |
+
self.lna = RMSNorm(dims)
|
131 |
+
self.lnb = RMSNorm(dims)
|
132 |
+
self.lnc = RMSNorm(dims)
|
133 |
+
|
134 |
+
def forward(self, x, xa=None, mask=None) -> Tensor:
|
135 |
+
x = x + self.attn(self.lna(x), xa=None, mask=mask)[0]
|
136 |
+
xb = x
|
137 |
+
if xa is not None:
|
138 |
+
x = x + self.attn(self.lnb(x), xa=xa, mask=None)[0] # type: ignore
|
139 |
+
b = torch.sigmoid(self.blend)
|
140 |
+
x = b * xb + (1 - b) * x
|
141 |
+
normx = self.lnc(x)
|
142 |
+
mlp_out = self.mlp(normx)
|
143 |
+
gate = self.t_gate(normx)
|
144 |
+
x = x + gate * mlp_out
|
145 |
+
return x
|
146 |
+
|
147 |
+
|
148 |
+
class feature_encoder(nn.Module):
|
149 |
+
def __init__(self, mels, dims, head, layer, act="gelu"):
|
150 |
+
super().__init__()
|
151 |
+
|
152 |
+
self.dims = dims
|
153 |
+
self.head = head
|
154 |
+
self.head_dim = dims // head
|
155 |
+
self.dropout = 0.01
|
156 |
+
act_fn = get_activation(act)
|
157 |
+
|
158 |
+
# pitch
|
159 |
+
# self.encoder = nn.Sequential(
|
160 |
+
# Conv1d(1, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
161 |
+
# Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
162 |
+
# Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
163 |
+
|
164 |
+
# spectrogram
|
165 |
+
self.encoder = nn.Sequential(
|
166 |
+
Conv1d(mels, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
167 |
+
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
|
168 |
+
Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
|
169 |
+
|
170 |
+
|
171 |
+
self.positional = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
|
172 |
+
self.norm = RMSNorm(dims)
|
173 |
+
|
174 |
+
def forward(self, x, xa=None, mask=None, max_tscale=36000):
|
175 |
+
if x.dim() == 2:
|
176 |
+
x = x.unsqueeze(0)
|
177 |
+
# x = self.pitch(x).permute(0, 2, 1)
|
178 |
+
x = self.encoder(x).permute(0, 2, 1)
|
179 |
+
max_tscale = x.shape[1] * 1000 if max_tscale is None else max_tscale
|
180 |
+
x = x + self.positional(x.shape[1], x.shape[-1], max_tscale).to(device, dtype)
|
181 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
182 |
+
x = self.norm(x)
|
183 |
+
return x
|
184 |
+
|
185 |
+
class processor(nn.Module):
|
186 |
+
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int, act: str = "gelu"):
|
187 |
+
super(processor, self).__init__()
|
188 |
+
self.dims = dims
|
189 |
+
self.head = head
|
190 |
+
self.layer = layer
|
191 |
+
self.ctx = ctx
|
192 |
+
self.act = act
|
193 |
+
self.dropout = 0.01
|
194 |
+
act_fn = get_activation(act)
|
195 |
+
|
196 |
+
self.token = nn.Embedding(vocab, dims, device=device, dtype=dtype)
|
197 |
+
self.positional = nn.Parameter(torch.empty(ctx, dims, device=device, dtype=dtype), requires_grad=True)
|
198 |
+
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
|
199 |
+
|
200 |
+
self.bA = nn.ModuleList(
|
201 |
+
[feature_encoder(mels=mels, dims=dims, head=head, layer=layer, act=act_fn)] +
|
202 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act_fn) for _ in range(layer)])
|
203 |
+
self.bB = nn.ModuleList([
|
204 |
+
Residual(ctx=ctx, dims=dims, head=head, act=act_fn)
|
205 |
+
for _ in range(layer)])
|
206 |
+
|
207 |
+
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
|
208 |
+
self.register_buffer("mask", mask, persistent=False)
|
209 |
+
self.norm = nn.LayerNorm(dims, device=device, dtype=dtype)
|
210 |
+
|
211 |
+
def forward(self, x, xa, sequential=False) -> Tensor:
|
212 |
+
x = self.token(x.long()) + self.positional[:x.shape[1]]
|
213 |
+
|
214 |
+
for b in chain(self.bA or []):
|
215 |
+
xa = b(x=xa, xa=None, mask=None)
|
216 |
+
|
217 |
+
for b in chain(self.bB or []):
|
218 |
+
x = b(x=x, xa=None, mask=self.mask)
|
219 |
+
xc = b(x, xa=xa, mask=None)
|
220 |
+
if sequential:
|
221 |
+
x = xc
|
222 |
+
else:
|
223 |
+
a = torch.sigmoid(self.blend)
|
224 |
+
x = a * xc + (1 - a) * x
|
225 |
+
|
226 |
+
x = self.norm(x)
|
227 |
+
x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
228 |
+
return x
|
229 |
+
|
230 |
+
class Echo(nn.Module):
|
231 |
+
def __init__(self, param: Dimensions):
|
232 |
+
super().__init__()
|
233 |
+
self.param = param
|
234 |
+
|
235 |
+
self.processor = processor(
|
236 |
+
vocab=param.vocab,
|
237 |
+
mels=param.mels,
|
238 |
+
ctx=param.ctx,
|
239 |
+
dims=param.dims,
|
240 |
+
head=param.head,
|
241 |
+
layer=param.layer,
|
242 |
+
act=param.act,
|
243 |
+
)
|
244 |
+
|
245 |
+
def forward(self,
|
246 |
+
labels=None,
|
247 |
+
input_ids=None,
|
248 |
+
spectrogram: Optional[torch.Tensor]=None,
|
249 |
+
pitch: Optional[torch.Tensor]=None,
|
250 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
251 |
+
|
252 |
+
enc= {}
|
253 |
+
if pitch is not None:
|
254 |
+
xa = pitch
|
255 |
+
enc["pitch"] = pitch
|
256 |
+
if spectrogram is not None:
|
257 |
+
xa = spectrogram
|
258 |
+
enc["spectrogram"] = spectrogram
|
259 |
+
|
260 |
+
x = input_ids
|
261 |
+
logits = self.processor(x, xa)
|
262 |
+
|
263 |
+
loss = None
|
264 |
+
if labels is not None:
|
265 |
+
loss = torch.nn.functional.cross_entropy(
|
266 |
+
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
|
267 |
+
return {"logits": logits, "loss": loss}
|
268 |
+
|
269 |
+
@property
|
270 |
+
def device(self):
|
271 |
+
return next(self.parameters()).device
|
272 |
+
@property
|
273 |
+
def dtype(self):
|
274 |
+
return next(self.parameters()).dtype
|
275 |
+
|
276 |
+
def _init_weights(self, module):
|
277 |
+
std = 0.02
|
278 |
+
self.init_counts = {
|
279 |
+
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
|
280 |
+
"Conv2d": 0, "processor": 0, "Echo": 0,
|
281 |
+
"Residual": 0, "MultiheadA": 0,
|
282 |
+
"MultiheadC": 0, "MultiheadD": 0, "FEncoder": 0,
|
283 |
+
"WEncoder": 0, "PEncoder": 0, "feature_encoder": 0}
|
284 |
+
|
285 |
+
for name, module in self.named_modules():
|
286 |
+
if isinstance(module, RMSNorm):
|
287 |
+
nn.init.ones_(module.weight)
|
288 |
+
self.init_counts["RMSNorm"] += 1
|
289 |
+
elif isinstance(module, nn.Linear):
|
290 |
+
if module.weight is not None:
|
291 |
+
nn.init.xavier_uniform_(module.weight)
|
292 |
+
if module.bias is not None:
|
293 |
+
nn.init.zeros_(module.bias)
|
294 |
+
self.init_counts["Linear"] += 1
|
295 |
+
elif isinstance(module, Conv1d):
|
296 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
297 |
+
if module.bias is not None:
|
298 |
+
nn.init.zeros_(module.bias)
|
299 |
+
self.init_counts["Conv1d"] += 1
|
300 |
+
elif isinstance(module, Conv2d):
|
301 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
302 |
+
if module.bias is not None:
|
303 |
+
nn.init.zeros_(module.bias)
|
304 |
+
self.init_counts["Conv2d"] += 1
|
305 |
+
elif isinstance(module, MultiheadA):
|
306 |
+
self.init_counts["MultiheadA"] += 1
|
307 |
+
elif isinstance(module, Residual):
|
308 |
+
self.init_counts["Residual"] += 1
|
309 |
+
elif isinstance(module, feature_encoder):
|
310 |
+
self.init_counts["feature_encoder"] += 1
|
311 |
+
elif isinstance(module, processor):
|
312 |
+
self.init_counts["processor"] += 1
|
313 |
+
elif isinstance(module, Echo):
|
314 |
+
self.init_counts["Echo"] += 1
|
315 |
+
|
316 |
+
def init_weights(self):
|
317 |
+
print("Initializing model weights...")
|
318 |
+
self.apply(self._init_weights)
|
319 |
+
print("Initialization summary:")
|
320 |
+
for module_type, count in self.init_counts.items():
|
321 |
+
if count > 0:
|
322 |
+
print(f"{module_type}: {count}")
|
323 |
+
|
324 |
+
def main():
|
325 |
+
token = ""
|
326 |
+
log_dir = os.path.join('D:/newmodel/output/logs', datetime.now().strftime('%m-%d_%H_%M_%S'))
|
327 |
+
os.makedirs(log_dir, exist_ok=True)
|
328 |
+
tokenizer = setup_tokenizer("D:/newmodel/mod5/tokenizer.json")
|
329 |
+
|
330 |
+
sanity_check = False
|
331 |
+
streaming = False
|
332 |
+
load_saved = False
|
333 |
+
save_dataset = False
|
334 |
+
cache_dir = None
|
335 |
+
extract_args = None
|
336 |
+
|
337 |
+
extract_args = {
|
338 |
+
"waveform": False,
|
339 |
+
"spec": False,
|
340 |
+
"f0": False,
|
341 |
+
"f0t": False,
|
342 |
+
"pitch": True,
|
343 |
+
"harmonics": False,
|
344 |
+
"aperiodics": False,
|
345 |
+
"phase_mod": False,
|
346 |
+
"crepe": False,
|
347 |
+
"sample_rate": 16000,
|
348 |
+
"hop_length": 256,
|
349 |
+
"mode": "mean",
|
350 |
+
"debug": False,
|
351 |
+
}
|
352 |
+
|
353 |
+
param = Dimensions(
|
354 |
+
vocab=40000,
|
355 |
+
mels=128,
|
356 |
+
ctx=2048,
|
357 |
+
dims=512,
|
358 |
+
head=4,
|
359 |
+
layer=4,
|
360 |
+
act="swish",
|
361 |
+
)
|
362 |
+
|
363 |
+
train_dataset, test_dataset = prepare_datasets(tokenizer, token, sanity_check=sanity_check, sample_rate=16000, streaming=streaming,
|
364 |
+
load_saved=load_saved, save_dataset=save_dataset, cache_dir=cache_dir, extract_args=extract_args, max_ctx=param.ctx)
|
365 |
+
|
366 |
+
model = Echo(param).to('cuda')
|
367 |
+
print(f"Trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
|
368 |
+
print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}")
|
369 |
+
|
370 |
+
from functools import partial
|
371 |
+
metrics_fn = partial(compute_metrics, print_pred=True, num_samples=1,
|
372 |
+
tokenizer=tokenizer, model=model)
|
373 |
+
|
374 |
+
if sanity_check:
|
375 |
+
training_args = Seq2SeqTrainingArguments(
|
376 |
+
output_dir=log_dir,
|
377 |
+
per_device_train_batch_size=1,
|
378 |
+
per_device_eval_batch_size=1,
|
379 |
+
max_steps=10,
|
380 |
+
eval_steps=5,
|
381 |
+
save_steps=0,
|
382 |
+
warmup_steps=0,
|
383 |
+
logging_steps=1,
|
384 |
+
logging_dir=log_dir,
|
385 |
+
eval_strategy="steps",
|
386 |
+
save_strategy="no",
|
387 |
+
logging_strategy="no",
|
388 |
+
report_to=["tensorboard"],
|
389 |
+
push_to_hub=False,
|
390 |
+
save_total_limit=1,
|
391 |
+
label_names=["labels"],
|
392 |
+
save_safetensors=False,
|
393 |
+
eval_on_start=False,
|
394 |
+
batch_eval_metrics=False,
|
395 |
+
disable_tqdm=False,
|
396 |
+
include_tokens_per_second=True,
|
397 |
+
include_num_input_tokens_seen=True,
|
398 |
+
learning_rate=1e-7,
|
399 |
+
weight_decay=0.01,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
training_args = Seq2SeqTrainingArguments(
|
403 |
+
output_dir=log_dir,
|
404 |
+
per_device_train_batch_size=1,
|
405 |
+
per_device_eval_batch_size=1,
|
406 |
+
max_steps=1000,
|
407 |
+
eval_steps=100,
|
408 |
+
save_steps=1000,
|
409 |
+
warmup_steps=100,
|
410 |
+
logging_steps=10,
|
411 |
+
logging_dir=log_dir,
|
412 |
+
logging_strategy="steps",
|
413 |
+
eval_strategy="steps",
|
414 |
+
save_strategy="no",
|
415 |
+
report_to=["tensorboard"],
|
416 |
+
push_to_hub=False,
|
417 |
+
save_total_limit=1,
|
418 |
+
label_names=["labels"],
|
419 |
+
save_safetensors=False,
|
420 |
+
eval_on_start=False,
|
421 |
+
batch_eval_metrics=False,
|
422 |
+
disable_tqdm=False,
|
423 |
+
include_tokens_per_second=True,
|
424 |
+
include_num_input_tokens_seen=True,
|
425 |
+
learning_rate=0.00025,
|
426 |
+
weight_decay=0.025,
|
427 |
+
)
|
428 |
+
|
429 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, eps=1e-8, weight_decay=training_args.weight_decay, betas=(0.9, 0.999),
|
430 |
+
amsgrad=False, foreach=False, fused=False, capturable=False, differentiable=False, maximize=False)
|
431 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=training_args.max_steps, eta_min=1e-9, last_epoch=-1)
|
432 |
+
|
433 |
+
trainer = Seq2SeqTrainer(
|
434 |
+
args=training_args,
|
435 |
+
model=model,
|
436 |
+
train_dataset=train_dataset,
|
437 |
+
eval_dataset=test_dataset,
|
438 |
+
data_collator=DataCollator(tokenizer=tokenizer),
|
439 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
440 |
+
compute_metrics=metrics_fn,
|
441 |
+
optimizers=(optimizer, scheduler)
|
442 |
+
)
|
443 |
+
|
444 |
+
model.init_weights()
|
445 |
+
trainer.train()
|
446 |
+
if __name__ == "__main__":
|
447 |
+
|
448 |
+
main()
|