Update model_hf.py
Browse files- model_hf.py +160 -320
model_hf.py
CHANGED
@@ -3,15 +3,12 @@ import pyworld as pw
|
|
3 |
import math
|
4 |
import warnings
|
5 |
import logging
|
6 |
-
import gzip
|
7 |
-
import base64
|
8 |
import torch
|
9 |
import torchaudio
|
10 |
import torch.nn.functional as F
|
11 |
import torch.nn.init as init
|
12 |
from torch import nn, Tensor
|
13 |
import numpy as np
|
14 |
-
from einops import rearrange
|
15 |
import matplotlib.pyplot as plt
|
16 |
from typing import Optional, Dict, Union, List, Tuple, Any
|
17 |
from functools import partial
|
@@ -22,8 +19,7 @@ from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
|
|
22 |
import transformers
|
23 |
import evaluate
|
24 |
from dataclasses import dataclass
|
25 |
-
import
|
26 |
-
from rich.traceback import install
|
27 |
|
28 |
torch.backends.cudnn.allow_tf32 = True
|
29 |
torch.backends.cuda.matmul.allow_tf32 = True
|
@@ -35,25 +31,7 @@ dtype = torch.float32
|
|
35 |
|
36 |
warnings.filterwarnings("ignore")
|
37 |
logging.basicConfig(level=logging.ERROR)
|
38 |
-
|
39 |
-
|
40 |
-
pretty_errors.configure(
|
41 |
-
separator_character = '*',
|
42 |
-
filename_display = pretty_errors.FILENAME_EXTENDED,
|
43 |
-
line_number_first = True,
|
44 |
-
display_link = True,
|
45 |
-
lines_before = 5,
|
46 |
-
lines_after = 2,
|
47 |
-
line_color = pretty_errors.RED + '> ' + pretty_errors.default_config.line_color,
|
48 |
-
code_color = ' ' + pretty_errors.default_config.line_color,
|
49 |
-
)
|
50 |
-
|
51 |
-
PATH = 'E:/hf'
|
52 |
-
os.environ['HF_HOME'] = PATH
|
53 |
-
os.environ['HF_DATASETS_CACHE'] = PATH
|
54 |
-
os.environ['TORCH_HOME'] = PATH
|
55 |
-
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
56 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
57 |
|
58 |
@dataclass
|
59 |
class Dimensions:
|
@@ -72,35 +50,36 @@ class Dimensions:
|
|
72 |
cross_attn: bool
|
73 |
features: List[str]
|
74 |
|
|
|
75 |
def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_length=160,
|
76 |
title="", markers=None, marker_labels=None,
|
77 |
show_voiced_regions=True, show_energy=False):
|
78 |
num_plots = sum([x is not None, w is not None, p is not None, per is not None])
|
79 |
if num_plots == 0:
|
80 |
raise ValueError("No data to plot. Please provide at least one input tensor.")
|
81 |
-
|
82 |
|
83 |
if w is not None:
|
84 |
w_np = w[sample_idx].detach().cpu().numpy()
|
85 |
if w_np.ndim > 1:
|
86 |
w_np = w_np.squeeze()
|
87 |
-
|
88 |
if x is not None:
|
89 |
x_np = x[sample_idx].detach().cpu().numpy()
|
90 |
if x_np.shape[0] < x_np.shape[1]:
|
91 |
x_np = x_np.T
|
92 |
-
|
93 |
if p is not None:
|
94 |
p_np = p[sample_idx].detach().cpu().numpy()
|
95 |
if p_np.ndim > 1:
|
96 |
p_np = p_np.squeeze()
|
97 |
-
|
98 |
if per is not None:
|
99 |
per_np = per[sample_idx].detach().cpu().numpy()
|
100 |
if per_np.ndim > 1:
|
101 |
per_np = per_np.squeeze()
|
102 |
-
|
103 |
-
|
104 |
fig, axs = plt.subplots(num_plots, 1, figsize=(14, 4*num_plots), sharex=True)
|
105 |
if num_plots == 1:
|
106 |
axs = [axs]
|
@@ -114,13 +93,13 @@ def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_
|
|
114 |
for i in range(len(per_np)-1):
|
115 |
if per_np[i] > threshold:
|
116 |
ax.axvspan(t_per[i], t_per[i+1], color='lightblue', alpha=0.2, zorder=0)
|
117 |
-
|
118 |
if w is not None:
|
119 |
w_np = w[sample_idx].detach().cpu().numpy()
|
120 |
if w_np.ndim > 1:
|
121 |
w_np = w_np.squeeze()
|
122 |
t = np.arange(len(w_np)) / sr
|
123 |
-
axs[
|
124 |
|
125 |
if show_energy:
|
126 |
frame_length = hop_length
|
@@ -132,51 +111,51 @@ def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_
|
|
132 |
energy = np.array(energy)
|
133 |
energy = energy / np.max(energy) * 0.8 * max(abs(w_np.min()), abs(w_np.max()))
|
134 |
t_energy = np.arange(len(energy)) * hop_length_energy / sr
|
135 |
-
axs[
|
136 |
-
axs[
|
137 |
-
axs[
|
138 |
-
axs[
|
139 |
-
axs[
|
140 |
-
axs[
|
141 |
-
|
142 |
|
143 |
if x is not None:
|
144 |
x_np = x[sample_idx].detach().cpu().numpy()
|
145 |
if x_np.shape[0] < x_np.shape[1]:
|
146 |
x_np = x_np.T
|
147 |
-
|
148 |
extent=[0, x_np.shape[0]*hop_length/sr, 0, x_np.shape[1]])
|
149 |
-
axs[
|
150 |
-
axs[
|
151 |
-
axs[
|
152 |
-
axs[
|
153 |
-
|
154 |
|
155 |
if p is not None:
|
156 |
p_np = p[sample_idx].detach().cpu().numpy()
|
157 |
if p_np.ndim > 1:
|
158 |
p_np = p_np.squeeze()
|
159 |
t_p = np.arange(len(p_np)) * hop_length / sr
|
160 |
-
axs[
|
161 |
-
axs[
|
162 |
-
axs[
|
163 |
-
axs[
|
164 |
-
axs[
|
165 |
-
axs[
|
166 |
-
|
167 |
|
168 |
if per is not None:
|
169 |
per_np = per[sample_idx].detach().cpu().numpy()
|
170 |
if per_np.ndim > 1:
|
171 |
per_np = per_np.squeeze()
|
172 |
t_per = np.arange(len(per_np)) * hop_length / sr
|
173 |
-
axs[
|
174 |
-
axs[
|
175 |
-
axs[
|
176 |
-
axs[
|
177 |
-
axs[
|
178 |
-
axs[
|
179 |
-
axs[
|
180 |
|
181 |
if markers is not None:
|
182 |
for i, t in enumerate(markers):
|
@@ -185,7 +164,7 @@ def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_
|
|
185 |
ax.axvline(x=t, color='k', linestyle='-', alpha=0.7, label=label if i == 0 else None)
|
186 |
if marker_labels:
|
187 |
axs[0].legend(loc='upper right', fontsize='small')
|
188 |
-
axs[-1].set_xlabel("
|
189 |
fig.suptitle(title, fontsize=16)
|
190 |
plt.tight_layout(rect=[0, 0, 1, 0.97])
|
191 |
plt.show()
|
@@ -254,15 +233,16 @@ def get_dtype():
|
|
254 |
def tox():
|
255 |
return {"device": get_device(), "dtype": get_dtype()}
|
256 |
|
257 |
-
def sinusoids(length, channels,
|
258 |
assert channels % 2 == 0
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
return torch.cat([torch.sin(
|
|
|
263 |
|
264 |
class rotary(nn.Module):
|
265 |
-
def __init__(self, dims, head, max_ctx=1500, theta=10000, radii=
|
266 |
super(rotary, self).__init__()
|
267 |
|
268 |
self.use_pbias = use_pbias
|
@@ -275,7 +255,7 @@ class rotary(nn.Module):
|
|
275 |
self.counter = 0
|
276 |
self.last_theta = None
|
277 |
|
278 |
-
self.
|
279 |
self.theta = nn.Parameter(torch.tensor(theta, device=device, dtype=dtype), requires_grad=True)
|
280 |
|
281 |
def theta_freqs(self, theta):
|
@@ -323,15 +303,6 @@ class rotary(nn.Module):
|
|
323 |
f0 = f0.squeeze(0)
|
324 |
return f0.to(device=device, dtype=dtype)
|
325 |
|
326 |
-
def synth_f0(self, f0, ctx):
|
327 |
-
if f0.dim() == 1:
|
328 |
-
length = f0.shape[0]
|
329 |
-
if length == ctx:
|
330 |
-
return f0
|
331 |
-
frames = length / ctx
|
332 |
-
idx = torch.arange(ctx, device=f0.device)
|
333 |
-
return f0[idx]
|
334 |
-
|
335 |
def align_f0(self, ctx, f0):
|
336 |
f0 = self.f0proj(f0)
|
337 |
if f0.dim() == 3:
|
@@ -382,7 +353,9 @@ class rotary(nn.Module):
|
|
382 |
theta = f0_mean + self.theta
|
383 |
else:
|
384 |
theta = self.theta
|
|
|
385 |
freqs = self.theta_freqs(theta)
|
|
|
386 |
freqs = t[:, None] * freqs[None, :]
|
387 |
|
388 |
if self.radii and f0 is not None:
|
@@ -422,6 +395,8 @@ class rotary(nn.Module):
|
|
422 |
x1 = x1.view(orig_shape)
|
423 |
return torch.cat([x1.type_as(x), x2], dim=-1)
|
424 |
|
|
|
|
|
425 |
class MultiheadA(nn.Module):
|
426 |
_seen = set()
|
427 |
rbf = False
|
@@ -435,10 +410,10 @@ class MultiheadA(nn.Module):
|
|
435 |
self.debug = debug
|
436 |
self.counter = 0
|
437 |
|
438 |
-
self.q = Linear(dims, dims).to(device, dtype)
|
439 |
-
self.k = Linear(dims, dims, bias=False).to(device, dtype)
|
440 |
-
self.v = Linear(dims, dims).to(device, dtype)
|
441 |
-
self.o = Linear(dims, dims).to(device, dtype)
|
442 |
|
443 |
self.pad_token = 0
|
444 |
self.rotary_emb = rotary_emb
|
@@ -458,6 +433,15 @@ class MultiheadA(nn.Module):
|
|
458 |
else:
|
459 |
self.rope = None
|
460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
def rbf_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
462 |
scale = (self.dims // self.head) ** -0.25
|
463 |
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
@@ -523,127 +507,7 @@ class MultiheadA(nn.Module):
|
|
523 |
self.counter += 1
|
524 |
return self.o(wv), qk
|
525 |
|
526 |
-
class SpanPredictor(nn.Module):
|
527 |
-
def __init__(self, dims):
|
528 |
-
super().__init__()
|
529 |
-
self.linear = nn.Linear(in_features=dims, out_features=1)
|
530 |
-
|
531 |
-
def forward(self, global_out):
|
532 |
-
scale = torch.sigmoid(self.linear(global_out))
|
533 |
-
return scale
|
534 |
-
|
535 |
-
class FocusA(nn.Module):
|
536 |
-
def __init__(self, base: int, dims: int, head: int, max_dist: int, sharpen: bool,
|
537 |
-
win_size: int = 32, max_span: int = 32, slid_win: int = 32,
|
538 |
-
temp_scale: float = 0.01, num_iterations: int = 3):
|
539 |
-
|
540 |
-
super().__init__()
|
541 |
-
self.base = base
|
542 |
-
self.dims = dims
|
543 |
-
self.head = head
|
544 |
-
self.max_dist = max_dist
|
545 |
-
self.sharpen = sharpen
|
546 |
-
self.win_size = win_size
|
547 |
-
self.max_span = max_span
|
548 |
-
self.slid_win = slid_win
|
549 |
-
self.temp_scale = temp_scale
|
550 |
-
self.num_iterations = num_iterations
|
551 |
-
self.span_predictor = SpanPredictor(dims=dims)
|
552 |
-
self.span_scale_param = nn.Parameter(torch.tensor(1.0))
|
553 |
-
|
554 |
-
self.attn_local = nn.MultiheadAttention(embed_dim=dims, num_heads=head, batch_first=True)
|
555 |
-
self.attn_global = nn.MultiheadAttention(embed_dim=dims, num_heads=head, batch_first=True)
|
556 |
-
|
557 |
-
self.ln_local = nn.LayerNorm(normalized_shape=dims)
|
558 |
-
self.ln_global = nn.LayerNorm(normalized_shape=dims)
|
559 |
-
self.projection = nn.Linear(in_features=2 * dims, out_features=dims)
|
560 |
-
|
561 |
-
def _focus(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, span_scale: torch.Tensor) -> torch.Tensor:
|
562 |
-
|
563 |
-
max_iterations = 1
|
564 |
-
iteration = 0
|
565 |
-
prev_attn_out = torch.zeros_like(query)
|
566 |
-
base_threshold = 1e-4
|
567 |
-
scaling_factor = 0.1
|
568 |
-
|
569 |
-
while iteration < max_iterations:
|
570 |
-
span_len = int(self.max_span * span_scale.mean().item())
|
571 |
-
span_len = min(span_len, query.size(1), key.size(1), value.size(1))
|
572 |
-
eff_span = min(span_len, self.max_dist)
|
573 |
-
|
574 |
-
q_span = query[:, :eff_span, :]
|
575 |
-
k_span = key[:, :eff_span, :]
|
576 |
-
v_span = value[:, :eff_span, :]
|
577 |
-
|
578 |
-
batch, ctx, dims = q_span.size()
|
579 |
-
scale_factor = (dims // self.head) ** -0.25
|
580 |
-
|
581 |
-
q = q_span.view(batch, ctx, self.head, -1).permute(0, 2, 1, 3)
|
582 |
-
k = k_span.view(batch, ctx, self.head, -1).permute(0, 2, 1, 3)
|
583 |
-
v = v_span.view(batch, ctx, self.head, -1).permute(0, 2, 1, 3)
|
584 |
-
|
585 |
-
if self.sharpen:
|
586 |
-
temperature = 1.0 + self.temp_scale * (1.0 - span_scale.mean().item())
|
587 |
-
else:
|
588 |
-
temperature = 0.5 + self.temp_scale * span_scale.mean().item()
|
589 |
-
|
590 |
-
attn_scores = torch.matmul(q, k.transpose(-2, -1))
|
591 |
-
attn_weights = torch.softmax((attn_scores / temperature) * scale_factor, dim=-1)
|
592 |
-
attn_out = torch.matmul(attn_weights, v)
|
593 |
-
|
594 |
-
attn_out = attn_out.permute(0, 2, 1, 3).contiguous().view(batch, ctx, -1)
|
595 |
|
596 |
-
diff = torch.abs(attn_out - prev_attn_out).mean()
|
597 |
-
dynamic_threshold = base_threshold + scaling_factor * diff
|
598 |
-
|
599 |
-
if diff < dynamic_threshold:
|
600 |
-
break
|
601 |
-
|
602 |
-
prev_attn_out = attn_out
|
603 |
-
query = query + attn_out
|
604 |
-
iteration += 1
|
605 |
-
|
606 |
-
return attn_out, attn_weights
|
607 |
-
|
608 |
-
def _window(self, x: torch.Tensor, win_size: int, span_len: int, span_scale: torch.Tensor) -> torch.Tensor:
|
609 |
-
|
610 |
-
batch, ctx, dims = x.size()
|
611 |
-
num_windows = (ctx + win_size - 1) // win_size
|
612 |
-
|
613 |
-
output = torch.zeros_like(x, device=x.device)
|
614 |
-
|
615 |
-
for i in range(num_windows):
|
616 |
-
start_idx = i * win_size
|
617 |
-
end_idx = min((i + 1) * win_size, ctx)
|
618 |
-
query = x[:, start_idx:end_idx, :]
|
619 |
-
|
620 |
-
key_start = max(0, start_idx - span_len + win_size)
|
621 |
-
key_end = min(start_idx + span_len, ctx)
|
622 |
-
key = x[:, key_start:key_end, :]
|
623 |
-
value = x[:, key_start:key_end, :]
|
624 |
-
|
625 |
-
attn_out = self._focus(query, key, value, span_scale)
|
626 |
-
output[:, start_idx:end_idx, :] = attn_out
|
627 |
-
|
628 |
-
return output
|
629 |
-
|
630 |
-
def forward(self, x, xa=None, mask=None, kv_cache=None) -> torch.Tensor:
|
631 |
-
span_scale = self.span_predictor(x)
|
632 |
-
span_scale = torch.sigmoid(span_scale)
|
633 |
-
|
634 |
-
local_attn_out = self.attn_local(x, x, x)
|
635 |
-
local_attn_out = self.ln_local(local_attn_out)
|
636 |
-
|
637 |
-
global_attn_out = self.attn_global(x, x, x)
|
638 |
-
global_attn_out = self.ln_global(global_attn_out)
|
639 |
-
|
640 |
-
attn_out = torch.cat((local_attn_out, global_attn_out), dim=-1)
|
641 |
-
attn_out = self.projection(attn_out)
|
642 |
-
|
643 |
-
windowed_attn_out = self._window(attn_out, self.win_size, self.max_span, span_scale)
|
644 |
-
focused_attn_out = self._focus(windowed_attn_out, windowed_attn_out, windowed_attn_out, span_scale)
|
645 |
-
return focused_attn_out
|
646 |
-
|
647 |
class t_gate(nn.Module):
|
648 |
def __init__(self, dims, num_types=4):
|
649 |
super().__init__()
|
@@ -745,18 +609,14 @@ class Residual(nn.Module):
|
|
745 |
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
746 |
|
747 |
def forward(self, x, xa=None, mask=None, enc=None, layer=None, feature_type="audio") -> Tensor:
|
748 |
-
x = x.to(device, dtype)
|
749 |
-
if xa is not None:
|
750 |
-
xa = xa.to(device, dtype)
|
751 |
|
752 |
-
blend = self.blend
|
753 |
x = x + self.attna(self.lna(x), xa=None, mask=mask, enc=enc, layer=layer)[0]
|
754 |
xb = x
|
755 |
if self.attnb and xa is not None:
|
756 |
x = x + self.attnb(self.lnb(x), xa=xa, mask=None, enc=enc, layer=layer)[0]
|
757 |
|
758 |
if self.do_blend:
|
759 |
-
b = torch.sigmoid(blend)
|
760 |
x = b * xb + (1 - b) * x
|
761 |
|
762 |
if self.skip_gates:
|
@@ -978,37 +838,35 @@ class AudioEncoder(nn.Module):
|
|
978 |
cgate = False
|
979 |
|
980 |
self.blocks = nn.ModuleDict({
|
|
|
981 |
"spectrogram": nn.ModuleList(
|
982 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
983 |
-
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
984 |
-
),
|
|
|
985 |
"waveform": nn.ModuleList(
|
986 |
[WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] +
|
987 |
-
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
988 |
-
),
|
|
|
989 |
"pitch": nn.ModuleList(
|
990 |
[FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)] +
|
991 |
-
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
992 |
-
),
|
|
|
993 |
"envelope": nn.ModuleList(
|
994 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
995 |
-
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
996 |
-
),
|
|
|
997 |
"phase": nn.ModuleList(
|
998 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
999 |
-
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
1000 |
-
)
|
1001 |
-
|
1002 |
|
1003 |
def forward(self, enc, layer="encoder"):
|
1004 |
enc = dict_to(enc, device, dtype)
|
1005 |
-
|
1006 |
-
if self.counter < 1:
|
1007 |
-
s = enc.get("spectrogram")
|
1008 |
-
w = enc.get("waveform")
|
1009 |
-
p = default(enc.get("pitch"), enc.get("f0"))
|
1010 |
-
plot_waveform(x=s, w=w, p=p, hop_length=128)
|
1011 |
-
|
1012 |
out = {}
|
1013 |
out.update(enc)
|
1014 |
|
@@ -1018,13 +876,18 @@ class AudioEncoder(nn.Module):
|
|
1018 |
for block in self.blocks[f]:
|
1019 |
x = block(x, enc=enc, layer=layer)
|
1020 |
out[f] = x
|
1021 |
-
|
1022 |
-
if "encoder" in self.debug
|
|
|
|
|
|
|
|
|
1023 |
shapes = {k: v.shape for k, v in enc.items()}
|
1024 |
print(f"Step {self.counter}: mode: {list(enc.keys()) }: shapes: {shapes}")
|
1025 |
self.counter += 1
|
1026 |
return out
|
1027 |
|
|
|
1028 |
class TextDecoder(nn.Module):
|
1029 |
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer: int, cross_attn: bool,
|
1030 |
debug: List[str], features: List[str]):
|
@@ -1038,6 +901,8 @@ class TextDecoder(nn.Module):
|
|
1038 |
self.counter = 0
|
1039 |
self.dropout = 0.01
|
1040 |
self.features = features
|
|
|
|
|
1041 |
|
1042 |
self.token = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)
|
1043 |
with torch.no_grad():
|
@@ -1058,10 +923,7 @@ class TextDecoder(nn.Module):
|
|
1058 |
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
|
1059 |
self.register_buffer("mask", mask, persistent=False)
|
1060 |
|
1061 |
-
def forward(self, x, enc, order=None, layer='decoder'
|
1062 |
-
enc = dict_to(enc, device, dtype)
|
1063 |
-
x = x.to(device)
|
1064 |
-
bln = self.blend
|
1065 |
|
1066 |
if order is None:
|
1067 |
order = self.features
|
@@ -1070,6 +932,7 @@ class TextDecoder(nn.Module):
|
|
1070 |
x = self.token(x) + self.positional[:x.shape[1]]
|
1071 |
x = F.dropout(x, p=self.dropout, training=self.training)
|
1072 |
|
|
|
1073 |
for block in self.block:
|
1074 |
x = block(x, xa=None, mask=mask, enc=None, layer=layer)
|
1075 |
|
@@ -1079,24 +942,25 @@ class TextDecoder(nn.Module):
|
|
1079 |
for block in self.blocks[f]:
|
1080 |
out = block(x=x, xa=xa, mask=None, enc=None, layer=layer)
|
1081 |
|
1082 |
-
if sequential:
|
1083 |
x = out
|
1084 |
else:
|
1085 |
-
a = torch.sigmoid(
|
1086 |
x = a * out + (1 - a) * x
|
1087 |
|
1088 |
-
if "decoder" in self.debug
|
1089 |
-
|
|
|
1090 |
self.counter += 1
|
1091 |
|
1092 |
x = self.ln_dec(x)
|
1093 |
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
1094 |
|
|
|
1095 |
class Echo(nn.Module):
|
1096 |
def __init__(self, param: Dimensions):
|
1097 |
super().__init__()
|
1098 |
self.param = param
|
1099 |
-
self.count = 0
|
1100 |
|
1101 |
self.encoder = AudioEncoder(
|
1102 |
mels=param.mels,
|
@@ -1119,32 +983,6 @@ class Echo(nn.Module):
|
|
1119 |
debug=param.debug,
|
1120 |
features=param.features,
|
1121 |
)
|
1122 |
-
|
1123 |
-
all_head = torch.zeros(self.param.text_idx, self.param.text_head, dtype=torch.bool)
|
1124 |
-
all_head[self.param.text_idx // 2 :] = True
|
1125 |
-
self.register_buffer("alignment_head", all_head.to_sparse(), persistent=False)
|
1126 |
-
|
1127 |
-
def update_base(self, f0):
|
1128 |
-
for name, module in self.encoder.named_modules():
|
1129 |
-
if isinstance(module, (rotary)):
|
1130 |
-
module.update_base(f0)
|
1131 |
-
|
1132 |
-
for name, module in self.decoder.named_modules():
|
1133 |
-
if isinstance(module, (rotary)):
|
1134 |
-
module.update_base(f0)
|
1135 |
-
|
1136 |
-
def set_alignment_head(self, dump: bytes):
|
1137 |
-
array = np.frombuffer(
|
1138 |
-
gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()
|
1139 |
-
mask = torch.from_numpy(array).reshape(
|
1140 |
-
self.param.text_idx, self.param.text_head)
|
1141 |
-
self.register_buffer("alignment_head", mask.to_sparse(), persistent=False)
|
1142 |
-
|
1143 |
-
def embed_audio(self, spectrogram: torch.Tensor):
|
1144 |
-
return self.encoder(spectrogram)
|
1145 |
-
|
1146 |
-
def logits(self,input_ids: torch.Tensor, encoder_output: torch.Tensor):
|
1147 |
-
return self.decoder(input_ids, encoder_output)
|
1148 |
|
1149 |
def forward(self,
|
1150 |
decoder_input_ids=None,
|
@@ -1172,7 +1010,7 @@ class Echo(nn.Module):
|
|
1172 |
encoder_inputs["phase"] = phase
|
1173 |
if f0 is not None:
|
1174 |
encoder_inputs["f0"] = f0
|
1175 |
-
|
1176 |
encoder_outputs = self.encoder(encoder_inputs)
|
1177 |
logits = self.decoder(input_ids, encoder_outputs)
|
1178 |
|
@@ -1181,11 +1019,7 @@ class Echo(nn.Module):
|
|
1181 |
loss = F.cross_entropy(
|
1182 |
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
|
1183 |
|
1184 |
-
|
1185 |
-
return {
|
1186 |
-
"logits": logits,
|
1187 |
-
"loss": loss,
|
1188 |
-
}
|
1189 |
|
1190 |
@property
|
1191 |
def device(self):
|
@@ -1241,34 +1075,6 @@ class Echo(nn.Module):
|
|
1241 |
if count > 0:
|
1242 |
print(f"{module_type}: {count}")
|
1243 |
|
1244 |
-
def register_gradient_hooks(self):
|
1245 |
-
for name, param in self.named_parameters():
|
1246 |
-
if param.requires_grad:
|
1247 |
-
if "encoder" in name:
|
1248 |
-
param.register_hook(lambda grad, n=name: self._print_encoder_grad(n, grad))
|
1249 |
-
elif "decoder" in name:
|
1250 |
-
param.register_hook(lambda grad, n=name: self._print_decoder_grad(n, grad))
|
1251 |
-
|
1252 |
-
print("Gradient debugging hooks registered")
|
1253 |
-
return self
|
1254 |
-
|
1255 |
-
def _print_encoder_grad(self, name, grad):
|
1256 |
-
if grad is not None and self.count == 10:
|
1257 |
-
norm = grad.median().item()
|
1258 |
-
print(f"ENCODER GRAD: {name} = {norm:.6f}")
|
1259 |
-
|
1260 |
-
return None
|
1261 |
-
|
1262 |
-
def _print_decoder_grad(self, name, grad):
|
1263 |
-
if grad is not None and self.count == 10:
|
1264 |
-
norm = grad.median().item()
|
1265 |
-
print(f"DECODER GRAD: {name} = {norm:.6f}")
|
1266 |
-
return None
|
1267 |
-
|
1268 |
-
def resetcounter(self):
|
1269 |
-
self.counter = 0
|
1270 |
-
print("Counter reset to 0.")
|
1271 |
-
|
1272 |
metric = evaluate.load(path="wer")
|
1273 |
|
1274 |
@dataclass
|
@@ -1480,13 +1286,18 @@ def compute_metrics(pred, compute_result: bool = True, print_pred: bool = False,
|
|
1480 |
pred_ids = pred_ids[0]
|
1481 |
else:
|
1482 |
pred_ids = pred_ids
|
1483 |
-
|
1484 |
-
|
|
|
1485 |
pred_ids = pred_ids.argmax(dim=-1)
|
1486 |
|
|
|
1487 |
pred_ids = pred_ids.tolist()
|
1488 |
label_ids = label_ids.tolist()
|
1489 |
|
|
|
|
|
|
|
1490 |
if print_pred:
|
1491 |
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
|
1492 |
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
|
@@ -1501,7 +1312,34 @@ def compute_metrics(pred, compute_result: bool = True, print_pred: bool = False,
|
|
1501 |
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
1502 |
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1503 |
|
1504 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1505 |
|
1506 |
logger = logging.getLogger(__name__)
|
1507 |
|
@@ -1526,6 +1364,8 @@ def setup_tokenizer(token: str, local_tokenizer_path: str = "./"):
|
|
1526 |
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
|
1527 |
ids = [id for id in ids if id not in sp_ids]
|
1528 |
return ids
|
|
|
|
|
1529 |
def bdec(ids_list, skip_special_tokens=True):
|
1530 |
results = []
|
1531 |
for ids in ids_list:
|
@@ -1533,6 +1373,7 @@ def setup_tokenizer(token: str, local_tokenizer_path: str = "./"):
|
|
1533 |
ids = [id for id in ids if id not in [0, 1, 2]]
|
1534 |
results.append(tokenizer.decode(ids))
|
1535 |
return results
|
|
|
1536 |
def save_pretrained(save_dir):
|
1537 |
os.makedirs(save_dir, exist_ok=True)
|
1538 |
tokenizer.save(f"{save_dir}/tokenizer.json")
|
@@ -1570,7 +1411,7 @@ def prepare_datasets(tokenizer, token: str, sanity_check: bool = False, dataset_
|
|
1570 |
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
|
1571 |
|
1572 |
if sanity_check:
|
1573 |
-
dataset = dataset["test"]
|
1574 |
dataset = dataset.select_columns(["audio", "transcription"])
|
1575 |
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1576 |
dataset = dataset.map(function=prepare_fn, remove_columns=["audio", "transcription"]).with_format(type="torch")
|
@@ -1609,9 +1450,6 @@ def get_training_args(
|
|
1609 |
num_train_epochs: int = 1,
|
1610 |
logging_steps: int = 1,
|
1611 |
eval_on_start: bool = False,
|
1612 |
-
learning_rate: float = 1e-4,
|
1613 |
-
weight_decay: float = 0.01,
|
1614 |
-
max_grad_norm: float = 1.0,
|
1615 |
) -> Seq2SeqTrainingArguments:
|
1616 |
|
1617 |
return Seq2SeqTrainingArguments(
|
@@ -1619,7 +1457,7 @@ def get_training_args(
|
|
1619 |
per_device_train_batch_size=1,
|
1620 |
per_device_eval_batch_size=1,
|
1621 |
gradient_accumulation_steps=1,
|
1622 |
-
eval_accumulation_steps=
|
1623 |
eval_strategy="steps",
|
1624 |
save_strategy="no",
|
1625 |
max_steps=max_steps,
|
@@ -1635,17 +1473,9 @@ def get_training_args(
|
|
1635 |
disable_tqdm=False,
|
1636 |
save_total_limit=1,
|
1637 |
label_names=["labels"],
|
1638 |
-
optim="adamw_torch",
|
1639 |
-
adam_beta1=0.9,
|
1640 |
-
adam_beta2=0.999,
|
1641 |
-
adam_epsilon=1e-8,
|
1642 |
-
lr_scheduler_type="cosine",
|
1643 |
-
learning_rate=learning_rate,
|
1644 |
-
weight_decay=weight_decay,
|
1645 |
save_safetensors=False,
|
1646 |
eval_on_start=eval_on_start,
|
1647 |
batch_eval_metrics=batch_eval_metrics,
|
1648 |
-
max_grad_norm=max_grad_norm,
|
1649 |
)
|
1650 |
|
1651 |
def main():
|
@@ -1666,24 +1496,18 @@ def main():
|
|
1666 |
eval_steps = 1,
|
1667 |
warmup_steps = 0,
|
1668 |
logging_steps = 1,
|
1669 |
-
eval_on_start =
|
1670 |
-
learning_rate = 5e-6,
|
1671 |
-
weight_decay = 0.01,
|
1672 |
-
max_grad_norm = 0.6,
|
1673 |
)
|
1674 |
else:
|
1675 |
training_args = get_training_args(
|
1676 |
log_dir,
|
1677 |
batch_eval_metrics = False,
|
1678 |
max_steps = 1000,
|
1679 |
-
save_steps =
|
1680 |
eval_steps = 100,
|
1681 |
warmup_steps = 100,
|
1682 |
logging_steps = 10,
|
1683 |
eval_on_start = False,
|
1684 |
-
learning_rate = 2.5e-4,
|
1685 |
-
weight_decay = 0.01,
|
1686 |
-
max_grad_norm = 0.6,
|
1687 |
)
|
1688 |
|
1689 |
return training_args
|
@@ -1723,7 +1547,7 @@ def main():
|
|
1723 |
"sampling_rate": 16000,
|
1724 |
"pad_mode": "constant",
|
1725 |
"center": True,
|
1726 |
-
"power":
|
1727 |
"window_fn": torch.hann_window,
|
1728 |
"mel_scale": "htk",
|
1729 |
"norm": None,
|
@@ -1734,7 +1558,7 @@ def main():
|
|
1734 |
global global_model
|
1735 |
global_model = model
|
1736 |
|
1737 |
-
metrics_fn = partial(compute_metrics, print_pred=False, num_samples=
|
1738 |
tokenizer=tokenizer, model=model)
|
1739 |
|
1740 |
print(f"{'Sanity check' if sanity_check else 'Training'} mode")
|
@@ -1744,6 +1568,17 @@ def main():
|
|
1744 |
sanity_check=sanity_check,
|
1745 |
dataset_config=dataset_config)
|
1746 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1747 |
trainer = Seq2SeqTrainer(
|
1748 |
args=training_args,
|
1749 |
model=model,
|
@@ -1751,11 +1586,16 @@ def main():
|
|
1751 |
eval_dataset=test_dataset,
|
1752 |
data_collator=DataCollator(tokenizer=tokenizer),
|
1753 |
compute_metrics=metrics_fn,
|
|
|
1754 |
)
|
1755 |
|
1756 |
model.init_weights()
|
1757 |
trainer.train()
|
1758 |
|
|
|
1759 |
if __name__ == "__main__":
|
1760 |
main()
|
1761 |
|
|
|
|
|
|
|
|
3 |
import math
|
4 |
import warnings
|
5 |
import logging
|
|
|
|
|
6 |
import torch
|
7 |
import torchaudio
|
8 |
import torch.nn.functional as F
|
9 |
import torch.nn.init as init
|
10 |
from torch import nn, Tensor
|
11 |
import numpy as np
|
|
|
12 |
import matplotlib.pyplot as plt
|
13 |
from typing import Optional, Dict, Union, List, Tuple, Any
|
14 |
from functools import partial
|
|
|
19 |
import transformers
|
20 |
import evaluate
|
21 |
from dataclasses import dataclass
|
22 |
+
from opimizer import MaxFactor
|
|
|
23 |
|
24 |
torch.backends.cudnn.allow_tf32 = True
|
25 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
31 |
|
32 |
warnings.filterwarnings("ignore")
|
33 |
logging.basicConfig(level=logging.ERROR)
|
34 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
@dataclass
|
37 |
class Dimensions:
|
|
|
50 |
cross_attn: bool
|
51 |
features: List[str]
|
52 |
|
53 |
+
|
54 |
def plot_waveform(x=None, w=None, p=None, per=None, sample_idx=0, sr=16000, hop_length=160,
|
55 |
title="", markers=None, marker_labels=None,
|
56 |
show_voiced_regions=True, show_energy=False):
|
57 |
num_plots = sum([x is not None, w is not None, p is not None, per is not None])
|
58 |
if num_plots == 0:
|
59 |
raise ValueError("No data to plot. Please provide at least one input tensor.")
|
60 |
+
t_spans = []
|
61 |
|
62 |
if w is not None:
|
63 |
w_np = w[sample_idx].detach().cpu().numpy()
|
64 |
if w_np.ndim > 1:
|
65 |
w_np = w_np.squeeze()
|
66 |
+
t_spans.append(len(w_np) / sr)
|
67 |
if x is not None:
|
68 |
x_np = x[sample_idx].detach().cpu().numpy()
|
69 |
if x_np.shape[0] < x_np.shape[1]:
|
70 |
x_np = x_np.T
|
71 |
+
t_spans.append(x_np.shape[0] * hop_length / sr)
|
72 |
if p is not None:
|
73 |
p_np = p[sample_idx].detach().cpu().numpy()
|
74 |
if p_np.ndim > 1:
|
75 |
p_np = p_np.squeeze()
|
76 |
+
t_spans.append(len(p_np) * hop_length / sr)
|
77 |
if per is not None:
|
78 |
per_np = per[sample_idx].detach().cpu().numpy()
|
79 |
if per_np.ndim > 1:
|
80 |
per_np = per_np.squeeze()
|
81 |
+
t_spans.append(len(per_np) * hop_length / sr)
|
82 |
+
max_t = max(t_spans) if t_spans else 0
|
83 |
fig, axs = plt.subplots(num_plots, 1, figsize=(14, 4*num_plots), sharex=True)
|
84 |
if num_plots == 1:
|
85 |
axs = [axs]
|
|
|
93 |
for i in range(len(per_np)-1):
|
94 |
if per_np[i] > threshold:
|
95 |
ax.axvspan(t_per[i], t_per[i+1], color='lightblue', alpha=0.2, zorder=0)
|
96 |
+
cu_ax = 0
|
97 |
if w is not None:
|
98 |
w_np = w[sample_idx].detach().cpu().numpy()
|
99 |
if w_np.ndim > 1:
|
100 |
w_np = w_np.squeeze()
|
101 |
t = np.arange(len(w_np)) / sr
|
102 |
+
axs[cu_ax].plot(t, w_np, color="tab:blue")
|
103 |
|
104 |
if show_energy:
|
105 |
frame_length = hop_length
|
|
|
111 |
energy = np.array(energy)
|
112 |
energy = energy / np.max(energy) * 0.8 * max(abs(w_np.min()), abs(w_np.max()))
|
113 |
t_energy = np.arange(len(energy)) * hop_length_energy / sr
|
114 |
+
axs[cu_ax].plot(t_energy, energy, color="red", alpha=0.7, label="Energy")
|
115 |
+
axs[cu_ax].legend(loc='upper right')
|
116 |
+
axs[cu_ax].set_title("Waveform")
|
117 |
+
axs[cu_ax].set_ylabel("Amplitude")
|
118 |
+
axs[cu_ax].set_xlim([0, max_t])
|
119 |
+
axs[cu_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
|
120 |
+
cu_ax += 1
|
121 |
|
122 |
if x is not None:
|
123 |
x_np = x[sample_idx].detach().cpu().numpy()
|
124 |
if x_np.shape[0] < x_np.shape[1]:
|
125 |
x_np = x_np.T
|
126 |
+
axs[cu_ax].imshow(x_np.T, aspect="auto", origin="lower", cmap="magma",
|
127 |
extent=[0, x_np.shape[0]*hop_length/sr, 0, x_np.shape[1]])
|
128 |
+
axs[cu_ax].set_title("Spectrogram")
|
129 |
+
axs[cu_ax].set_ylabel("Mel Bin")
|
130 |
+
axs[cu_ax].set_xlim([0, max_t])
|
131 |
+
axs[cu_ax].grid(True, axis='x', linestyle='--', alpha=0.3)
|
132 |
+
cu_ax += 1
|
133 |
|
134 |
if p is not None:
|
135 |
p_np = p[sample_idx].detach().cpu().numpy()
|
136 |
if p_np.ndim > 1:
|
137 |
p_np = p_np.squeeze()
|
138 |
t_p = np.arange(len(p_np)) * hop_length / sr
|
139 |
+
axs[cu_ax].plot(t_p, p_np, color="tab:green")
|
140 |
+
axs[cu_ax].set_title("Pitch")
|
141 |
+
axs[cu_ax].set_ylabel("Frequency (Hz)")
|
142 |
+
axs[cu_ax].set_xlim([0, max_t])
|
143 |
+
axs[cu_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
|
144 |
+
axs[cu_ax].set_ylim([0, min(1000, p_np.max() * 1.2)])
|
145 |
+
cu_ax += 1
|
146 |
|
147 |
if per is not None:
|
148 |
per_np = per[sample_idx].detach().cpu().numpy()
|
149 |
if per_np.ndim > 1:
|
150 |
per_np = per_np.squeeze()
|
151 |
t_per = np.arange(len(per_np)) * hop_length / sr
|
152 |
+
axs[cu_ax].plot(t_per, per_np, color="tab:red")
|
153 |
+
axs[cu_ax].set_title("Period (Voice Activity)")
|
154 |
+
axs[cu_ax].set_ylabel("periodocity")
|
155 |
+
axs[cu_ax].set_xlim([0, max_t])
|
156 |
+
axs[cu_ax].grid(True, axis='both', linestyle='--', alpha=0.3)
|
157 |
+
axs[cu_ax].set_ylim([-0.05, 1.05])
|
158 |
+
axs[cu_ax].axhline(y=0.5, color='k', linestyle='--', alpha=0.3)
|
159 |
|
160 |
if markers is not None:
|
161 |
for i, t in enumerate(markers):
|
|
|
164 |
ax.axvline(x=t, color='k', linestyle='-', alpha=0.7, label=label if i == 0 else None)
|
165 |
if marker_labels:
|
166 |
axs[0].legend(loc='upper right', fontsize='small')
|
167 |
+
axs[-1].set_xlabel("t (s)")
|
168 |
fig.suptitle(title, fontsize=16)
|
169 |
plt.tight_layout(rect=[0, 0, 1, 0.97])
|
170 |
plt.show()
|
|
|
233 |
def tox():
|
234 |
return {"device": get_device(), "dtype": get_dtype()}
|
235 |
|
236 |
+
def sinusoids(length, channels, max_tscale=10000):
|
237 |
assert channels % 2 == 0
|
238 |
+
log_tscale_increment = np.log(max_tscale) / (channels // 2 - 1)
|
239 |
+
inv_tscales = torch.exp(-log_tscale_increment * torch.arange(channels // 2))
|
240 |
+
scaled_t = torch.arange(length)[:, np.newaxis] * inv_tscales[np.newaxis, :]
|
241 |
+
return torch.cat([torch.sin(scaled_t), torch.cos(scaled_t)], dim=1)
|
242 |
+
|
243 |
|
244 |
class rotary(nn.Module):
|
245 |
+
def __init__(self, dims, head, max_ctx=1500, theta=10000, radii=True, debug: List[str] = [], use_pbias=False):
|
246 |
super(rotary, self).__init__()
|
247 |
|
248 |
self.use_pbias = use_pbias
|
|
|
255 |
self.counter = 0
|
256 |
self.last_theta = None
|
257 |
|
258 |
+
self.bias = nn.Parameter(torch.zeros(max_ctx, dims // 2))
|
259 |
self.theta = nn.Parameter(torch.tensor(theta, device=device, dtype=dtype), requires_grad=True)
|
260 |
|
261 |
def theta_freqs(self, theta):
|
|
|
303 |
f0 = f0.squeeze(0)
|
304 |
return f0.to(device=device, dtype=dtype)
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
def align_f0(self, ctx, f0):
|
307 |
f0 = self.f0proj(f0)
|
308 |
if f0.dim() == 3:
|
|
|
353 |
theta = f0_mean + self.theta
|
354 |
else:
|
355 |
theta = self.theta
|
356 |
+
|
357 |
freqs = self.theta_freqs(theta)
|
358 |
+
|
359 |
freqs = t[:, None] * freqs[None, :]
|
360 |
|
361 |
if self.radii and f0 is not None:
|
|
|
395 |
x1 = x1.view(orig_shape)
|
396 |
return torch.cat([x1.type_as(x), x2], dim=-1)
|
397 |
|
398 |
+
|
399 |
+
|
400 |
class MultiheadA(nn.Module):
|
401 |
_seen = set()
|
402 |
rbf = False
|
|
|
410 |
self.debug = debug
|
411 |
self.counter = 0
|
412 |
|
413 |
+
self.q = nn.Linear(dims, dims).to(device, dtype)
|
414 |
+
self.k = nn.Linear(dims, dims, bias=False).to(device, dtype)
|
415 |
+
self.v = nn.Linear(dims, dims).to(device, dtype)
|
416 |
+
self.o = nn.Linear(dims, dims).to(device, dtype)
|
417 |
|
418 |
self.pad_token = 0
|
419 |
self.rotary_emb = rotary_emb
|
|
|
433 |
else:
|
434 |
self.rope = None
|
435 |
|
436 |
+
def cos_sim(self, q: Tensor, k: Tensor, v: Tensor, mask) -> Tensor:
|
437 |
+
q_norm = torch.nn.functional.normalize(q, dim=-1, eps=1e-12)
|
438 |
+
k_norm = torch.nn.functional.normalize(k, dim=-1, eps=1e-12)
|
439 |
+
qk_cosine = torch.matmul(q_norm, k_norm.transpose(-1, -2))
|
440 |
+
qk_cosine = qk_cosine + mask
|
441 |
+
weights = F.softmax(qk_cosine, dim=-1)
|
442 |
+
out = torch.matmul(weights, v)
|
443 |
+
return out
|
444 |
+
|
445 |
def rbf_scores(self, q, k, rbf_sigma=1.0, rbf_ratio=0.0):
|
446 |
scale = (self.dims // self.head) ** -0.25
|
447 |
dot_scores = torch.matmul(q, k.transpose(-1, -2)) * scale
|
|
|
507 |
self.counter += 1
|
508 |
return self.o(wv), qk
|
509 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
class t_gate(nn.Module):
|
512 |
def __init__(self, dims, num_types=4):
|
513 |
super().__init__()
|
|
|
609 |
self.mlp_gate = nn.Sequential(Linear(dims, 1), nn.Sigmoid())
|
610 |
|
611 |
def forward(self, x, xa=None, mask=None, enc=None, layer=None, feature_type="audio") -> Tensor:
|
|
|
|
|
|
|
612 |
|
|
|
613 |
x = x + self.attna(self.lna(x), xa=None, mask=mask, enc=enc, layer=layer)[0]
|
614 |
xb = x
|
615 |
if self.attnb and xa is not None:
|
616 |
x = x + self.attnb(self.lnb(x), xa=xa, mask=None, enc=enc, layer=layer)[0]
|
617 |
|
618 |
if self.do_blend:
|
619 |
+
b = torch.sigmoid(self.blend)
|
620 |
x = b * xb + (1 - b) * x
|
621 |
|
622 |
if self.skip_gates:
|
|
|
838 |
cgate = False
|
839 |
|
840 |
self.blocks = nn.ModuleDict({
|
841 |
+
|
842 |
"spectrogram": nn.ModuleList(
|
843 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
844 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
845 |
+
if "spectrogram" in features else None),
|
846 |
+
|
847 |
"waveform": nn.ModuleList(
|
848 |
[WEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=11, act=act_fn)] +
|
849 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
850 |
+
if "waveform" in features else None),
|
851 |
+
|
852 |
"pitch": nn.ModuleList(
|
853 |
[FEncoder(input_dims=1, dims=dims, head=head, layer=layer, kernel_size=9, act=act, stride=2)] +
|
854 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
855 |
+
if "pitch" in features else None),
|
856 |
+
|
857 |
"envelope": nn.ModuleList(
|
858 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
859 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
860 |
+
if "envelope" in features else None),
|
861 |
+
|
862 |
"phase": nn.ModuleList(
|
863 |
[FEncoder(input_dims=mels, dims=dims, head=head, layer=layer, kernel_size=3, act=act_fn)] +
|
864 |
+
[Residual(ctx=ctx, dims=dims, head=head, act=act, debug=debug, features=features, cgate=cgate) for _ in range(layer)]
|
865 |
+
if "phase" in features else None),
|
866 |
+
})
|
867 |
|
868 |
def forward(self, enc, layer="encoder"):
|
869 |
enc = dict_to(enc, device, dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
870 |
out = {}
|
871 |
out.update(enc)
|
872 |
|
|
|
876 |
for block in self.blocks[f]:
|
877 |
x = block(x, enc=enc, layer=layer)
|
878 |
out[f] = x
|
879 |
+
|
880 |
+
if self.counter < 1 and "encoder" in self.debug:
|
881 |
+
s = enc.get("spectrogram")
|
882 |
+
w = enc.get("waveform")
|
883 |
+
p = default(enc.get("pitch"), enc.get("f0"))
|
884 |
+
plot_waveform(x=s, w=w, p=p, hop_length=128)
|
885 |
shapes = {k: v.shape for k, v in enc.items()}
|
886 |
print(f"Step {self.counter}: mode: {list(enc.keys()) }: shapes: {shapes}")
|
887 |
self.counter += 1
|
888 |
return out
|
889 |
|
890 |
+
|
891 |
class TextDecoder(nn.Module):
|
892 |
def __init__(self, vocab: int, ctx: int, dims: int, head: int, layer: int, cross_attn: bool,
|
893 |
debug: List[str], features: List[str]):
|
|
|
901 |
self.counter = 0
|
902 |
self.dropout = 0.01
|
903 |
self.features = features
|
904 |
+
self.do_blend = "no_blend" not in self.debug
|
905 |
+
self.sequential = False
|
906 |
|
907 |
self.token = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)
|
908 |
with torch.no_grad():
|
|
|
923 |
mask = torch.tril(torch.ones(ctx, ctx), diagonal=0)
|
924 |
self.register_buffer("mask", mask, persistent=False)
|
925 |
|
926 |
+
def forward(self, x, enc, order=None, layer='decoder') -> Tensor:
|
|
|
|
|
|
|
927 |
|
928 |
if order is None:
|
929 |
order = self.features
|
|
|
932 |
x = self.token(x) + self.positional[:x.shape[1]]
|
933 |
x = F.dropout(x, p=self.dropout, training=self.training)
|
934 |
|
935 |
+
|
936 |
for block in self.block:
|
937 |
x = block(x, xa=None, mask=mask, enc=None, layer=layer)
|
938 |
|
|
|
942 |
for block in self.blocks[f]:
|
943 |
out = block(x=x, xa=xa, mask=None, enc=None, layer=layer)
|
944 |
|
945 |
+
if self.sequential:
|
946 |
x = out
|
947 |
else:
|
948 |
+
a = torch.sigmoid(self.blend[f])
|
949 |
x = a * out + (1 - a) * x
|
950 |
|
951 |
+
if self.counter < 1 and "decoder" in self.debug:
|
952 |
+
shapes = {k: v.shape for k, v in enc.items()}
|
953 |
+
print(f"Step {self.counter}: Decoder output shape: {x.shape}, enc keys: {list(enc.keys())}, order: {order}: shapes: {shapes}")
|
954 |
self.counter += 1
|
955 |
|
956 |
x = self.ln_dec(x)
|
957 |
return x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
|
958 |
|
959 |
+
|
960 |
class Echo(nn.Module):
|
961 |
def __init__(self, param: Dimensions):
|
962 |
super().__init__()
|
963 |
self.param = param
|
|
|
964 |
|
965 |
self.encoder = AudioEncoder(
|
966 |
mels=param.mels,
|
|
|
983 |
debug=param.debug,
|
984 |
features=param.features,
|
985 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
986 |
|
987 |
def forward(self,
|
988 |
decoder_input_ids=None,
|
|
|
1010 |
encoder_inputs["phase"] = phase
|
1011 |
if f0 is not None:
|
1012 |
encoder_inputs["f0"] = f0
|
1013 |
+
|
1014 |
encoder_outputs = self.encoder(encoder_inputs)
|
1015 |
logits = self.decoder(input_ids, encoder_outputs)
|
1016 |
|
|
|
1019 |
loss = F.cross_entropy(
|
1020 |
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
|
1021 |
|
1022 |
+
return {"logits": logits, "loss": loss}
|
|
|
|
|
|
|
|
|
1023 |
|
1024 |
@property
|
1025 |
def device(self):
|
|
|
1075 |
if count > 0:
|
1076 |
print(f"{module_type}: {count}")
|
1077 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1078 |
metric = evaluate.load(path="wer")
|
1079 |
|
1080 |
@dataclass
|
|
|
1286 |
pred_ids = pred_ids[0]
|
1287 |
else:
|
1288 |
pred_ids = pred_ids
|
1289 |
+
if hasattr(pred_ids, "ndim") and pred_ids.ndim == 3:
|
1290 |
+
if not isinstance(pred_ids, torch.Tensor):
|
1291 |
+
pred_ids = torch.tensor(pred_ids)
|
1292 |
pred_ids = pred_ids.argmax(dim=-1)
|
1293 |
|
1294 |
+
|
1295 |
pred_ids = pred_ids.tolist()
|
1296 |
label_ids = label_ids.tolist()
|
1297 |
|
1298 |
+
pad_token_id = tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else 0
|
1299 |
+
label_ids = [[pad_token_id if token == -100 else token for token in seq] for seq in label_ids]
|
1300 |
+
|
1301 |
if print_pred:
|
1302 |
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
|
1303 |
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=False)
|
|
|
1312 |
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
|
1313 |
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1314 |
|
1315 |
+
|
1316 |
+
if model is None:
|
1317 |
+
global global_model
|
1318 |
+
if 'global_model' in globals():
|
1319 |
+
model = global_model
|
1320 |
+
|
1321 |
+
if model is not None:
|
1322 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1_000_000
|
1323 |
+
if trainable_params > 0:
|
1324 |
+
efficiency_score = (100 - wer) / trainable_params
|
1325 |
+
else:
|
1326 |
+
print("Warning: Zero trainable parameters detected")
|
1327 |
+
efficiency_score = 0.0
|
1328 |
+
else:
|
1329 |
+
print("Warning: Model not available for parameter counting")
|
1330 |
+
trainable_params = 0.0
|
1331 |
+
efficiency_score = 0.0
|
1332 |
+
|
1333 |
+
if hasattr(wer, "item"):
|
1334 |
+
wer = wer.item()
|
1335 |
+
|
1336 |
+
metrics = {
|
1337 |
+
"wer": float(wer),
|
1338 |
+
"trainable_params_M": float(trainable_params),
|
1339 |
+
"efficiency_score": float(efficiency_score),
|
1340 |
+
}
|
1341 |
+
return metrics
|
1342 |
+
|
1343 |
|
1344 |
logger = logging.getLogger(__name__)
|
1345 |
|
|
|
1364 |
sp_ids = [tokenizer.token_to_id(t) for t in ["<PAD>", "<BOS>", "<EOS>"]]
|
1365 |
ids = [id for id in ids if id not in sp_ids]
|
1366 |
return ids
|
1367 |
+
|
1368 |
+
|
1369 |
def bdec(ids_list, skip_special_tokens=True):
|
1370 |
results = []
|
1371 |
for ids in ids_list:
|
|
|
1373 |
ids = [id for id in ids if id not in [0, 1, 2]]
|
1374 |
results.append(tokenizer.decode(ids))
|
1375 |
return results
|
1376 |
+
|
1377 |
def save_pretrained(save_dir):
|
1378 |
os.makedirs(save_dir, exist_ok=True)
|
1379 |
tokenizer.save(f"{save_dir}/tokenizer.json")
|
|
|
1411 |
dataset = dataset.cast_column(column="audio", feature=Audio(sampling_rate=16000)).select_columns(["audio", "transcription"])
|
1412 |
|
1413 |
if sanity_check:
|
1414 |
+
dataset = dataset["test"].take(10)
|
1415 |
dataset = dataset.select_columns(["audio", "transcription"])
|
1416 |
prepare_fn = partial(extract_features, tokenizer=tokenizer, **dataset_config)
|
1417 |
dataset = dataset.map(function=prepare_fn, remove_columns=["audio", "transcription"]).with_format(type="torch")
|
|
|
1450 |
num_train_epochs: int = 1,
|
1451 |
logging_steps: int = 1,
|
1452 |
eval_on_start: bool = False,
|
|
|
|
|
|
|
1453 |
) -> Seq2SeqTrainingArguments:
|
1454 |
|
1455 |
return Seq2SeqTrainingArguments(
|
|
|
1457 |
per_device_train_batch_size=1,
|
1458 |
per_device_eval_batch_size=1,
|
1459 |
gradient_accumulation_steps=1,
|
1460 |
+
eval_accumulation_steps=1,
|
1461 |
eval_strategy="steps",
|
1462 |
save_strategy="no",
|
1463 |
max_steps=max_steps,
|
|
|
1473 |
disable_tqdm=False,
|
1474 |
save_total_limit=1,
|
1475 |
label_names=["labels"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1476 |
save_safetensors=False,
|
1477 |
eval_on_start=eval_on_start,
|
1478 |
batch_eval_metrics=batch_eval_metrics,
|
|
|
1479 |
)
|
1480 |
|
1481 |
def main():
|
|
|
1496 |
eval_steps = 1,
|
1497 |
warmup_steps = 0,
|
1498 |
logging_steps = 1,
|
1499 |
+
eval_on_start = True,
|
|
|
|
|
|
|
1500 |
)
|
1501 |
else:
|
1502 |
training_args = get_training_args(
|
1503 |
log_dir,
|
1504 |
batch_eval_metrics = False,
|
1505 |
max_steps = 1000,
|
1506 |
+
save_steps = 1000,
|
1507 |
eval_steps = 100,
|
1508 |
warmup_steps = 100,
|
1509 |
logging_steps = 10,
|
1510 |
eval_on_start = False,
|
|
|
|
|
|
|
1511 |
)
|
1512 |
|
1513 |
return training_args
|
|
|
1547 |
"sampling_rate": 16000,
|
1548 |
"pad_mode": "constant",
|
1549 |
"center": True,
|
1550 |
+
"power": 1.0,
|
1551 |
"window_fn": torch.hann_window,
|
1552 |
"mel_scale": "htk",
|
1553 |
"norm": None,
|
|
|
1558 |
global global_model
|
1559 |
global_model = model
|
1560 |
|
1561 |
+
metrics_fn = partial(compute_metrics, print_pred=False, num_samples=1,
|
1562 |
tokenizer=tokenizer, model=model)
|
1563 |
|
1564 |
print(f"{'Sanity check' if sanity_check else 'Training'} mode")
|
|
|
1568 |
sanity_check=sanity_check,
|
1569 |
dataset_config=dataset_config)
|
1570 |
|
1571 |
+
optimizer = MaxFactor(model.parameters(), lr=0.025, beta2_decay=-0.8, eps=(1e-10, 1e-7), d=1.0,
|
1572 |
+
weight_decay=0.025, gamma=0.99, max=False)
|
1573 |
+
|
1574 |
+
|
1575 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
1576 |
+
optimizer,
|
1577 |
+
T_max=training_args.max_steps,
|
1578 |
+
eta_min=1e-7,
|
1579 |
+
last_epoch=-1,
|
1580 |
+
)
|
1581 |
+
|
1582 |
trainer = Seq2SeqTrainer(
|
1583 |
args=training_args,
|
1584 |
model=model,
|
|
|
1586 |
eval_dataset=test_dataset,
|
1587 |
data_collator=DataCollator(tokenizer=tokenizer),
|
1588 |
compute_metrics=metrics_fn,
|
1589 |
+
optimizers=(optimizer, scheduler)
|
1590 |
)
|
1591 |
|
1592 |
model.init_weights()
|
1593 |
trainer.train()
|
1594 |
|
1595 |
+
|
1596 |
if __name__ == "__main__":
|
1597 |
main()
|
1598 |
|
1599 |
+
|
1600 |
+
|
1601 |
+
|