nan removal
Browse files- handcrafted_solution.py +4 -3
handcrafted_solution.py
CHANGED
@@ -682,10 +682,11 @@ def predict(entry, visualize=False,
|
|
682 |
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
|
683 |
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
|
684 |
|
685 |
-
|
686 |
-
|
|
|
687 |
|
688 |
-
|
689 |
|
690 |
vert_edge_per_image[i] = vertices, connections, vertices_3d
|
691 |
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, **kwargs)
|
|
|
682 |
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
|
683 |
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
|
684 |
|
685 |
+
if not depthmap_used:
|
686 |
+
not_nan_items = np.all(~np.isnan(vertices_3d), axis=1)
|
687 |
+
_, closest_fitted = points3d_kdtree.query(vertices_3d[not_nan_items])
|
688 |
|
689 |
+
vertices_3d[not_nan_items] = points3d_kdtree.data[closest_fitted]
|
690 |
|
691 |
vert_edge_per_image[i] = vertices, connections, vertices_3d
|
692 |
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, **kwargs)
|