clustering_eps=150
Browse files- handcrafted_solution.py +2 -2
- script.py +1 -0
handcrafted_solution.py
CHANGED
@@ -430,7 +430,7 @@ def prune_not_connected(all_3d_vertices, connections_3d):
|
|
430 |
return np.array(new_verts), connected_out
|
431 |
|
432 |
|
433 |
-
def predict(entry, visualize=False, scale_estimation_coefficient=2.5, **kwargs) -> Tuple[np.ndarray, List[int]]:
|
434 |
if 'gestalt' not in entry or 'depthcm' not in entry or 'K' not in entry or 'R' not in entry or 't' not in entry:
|
435 |
print('Missing required fields in the entry')
|
436 |
return (entry['__key__'], *empty_solution())
|
@@ -450,7 +450,7 @@ def predict(entry, visualize=False, scale_estimation_coefficient=2.5, **kwargs)
|
|
450 |
|
451 |
# print(len(points))
|
452 |
|
453 |
-
clustered = DBSCAN(eps=
|
454 |
clustered_indices = np.argsort(clustered)
|
455 |
|
456 |
points = points[clustered_indices]
|
|
|
430 |
return np.array(new_verts), connected_out
|
431 |
|
432 |
|
433 |
+
def predict(entry, visualize=False, scale_estimation_coefficient=2.5, clustering_eps = 100, **kwargs) -> Tuple[np.ndarray, List[int]]:
|
434 |
if 'gestalt' not in entry or 'depthcm' not in entry or 'K' not in entry or 'R' not in entry or 't' not in entry:
|
435 |
print('Missing required fields in the entry')
|
436 |
return (entry['__key__'], *empty_solution())
|
|
|
450 |
|
451 |
# print(len(points))
|
452 |
|
453 |
+
clustered = DBSCAN(eps=clustering_eps, min_samples=10).fit(points).labels_
|
454 |
clustered_indices = np.argsort(clustered)
|
455 |
|
456 |
points = points[clustered_indices]
|
script.py
CHANGED
@@ -137,6 +137,7 @@ if __name__ == "__main__":
|
|
137 |
merge_th=100.0,
|
138 |
min_missing_distance=30000000.0,
|
139 |
scale_estimation_coefficient=2.54,
|
|
|
140 |
))
|
141 |
|
142 |
for i, result in enumerate(tqdm(results)):
|
|
|
137 |
merge_th=100.0,
|
138 |
min_missing_distance=30000000.0,
|
139 |
scale_estimation_coefficient=2.54,
|
140 |
+
clustering_eps=150,
|
141 |
))
|
142 |
|
143 |
for i, result in enumerate(tqdm(results)):
|