Siromanec commited on
Commit
cdd5e5a
·
1 Parent(s): f646c62

added clustering and merge_th=100

Browse files
Files changed (2) hide show
  1. handcrafted_solution.py +33 -1
  2. script.py +1 -1
handcrafted_solution.py CHANGED
@@ -13,6 +13,7 @@ from hoho.color_mappings import gestalt_color_mapping
13
  from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
14
  from scipy.spatial import KDTree
15
  from scipy.spatial.distance import cdist
 
16
 
17
  apex_color = gestalt_color_mapping["apex"]
18
  eave_end_point = gestalt_color_mapping["eave_end_point"]
@@ -437,6 +438,33 @@ def predict(entry, visualize=False, scale_estimation_coefficient=2.5, **kwargs)
437
  image_dict = {}
438
  for k, v in entry["images"].items():
439
  image_dict[v.name] = v
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440
  for i, (gest, depthcm, K, R, t, imagekey) in enumerate(zip(entry['gestalt'],
441
  entry['depthcm'],
442
  entry['K'],
@@ -455,7 +483,11 @@ def predict(entry, visualize=False, scale_estimation_coefficient=2.5, **kwargs)
455
  continue
456
  belonging_points = []
457
  for i in image_dict[imagekey].point3D_ids[np.where(image_dict[imagekey].point3D_ids != -1)]:
458
- belonging_points.append(entry["points3d"][i])
 
 
 
 
459
 
460
  if len(belonging_points) < 1:
461
  print(f'No 3D points in image {i}')
 
13
  from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
14
  from scipy.spatial import KDTree
15
  from scipy.spatial.distance import cdist
16
+ import scipy.cluster.hierarchy as shc
17
 
18
  apex_color = gestalt_color_mapping["apex"]
19
  eave_end_point = gestalt_color_mapping["eave_end_point"]
 
438
  image_dict = {}
439
  for k, v in entry["images"].items():
440
  image_dict[v.name] = v
441
+ points = [v.xyz for k, v in entry["points3d"].items()]
442
+ too_big = len(points) > 25000
443
+
444
+ if not too_big:
445
+ points = np.array(points)
446
+ point_keys = [k for k, v in entry["points3d"].items()]
447
+ point_keys = np.array(point_keys)
448
+
449
+ # print(len(points))
450
+
451
+ clustered = shc.fclusterdata(points, 100, criterion='distance')
452
+ clustered_indices = np.argsort(clustered)
453
+
454
+ points = points[clustered_indices]
455
+ point_keys = point_keys[clustered_indices]
456
+ clustered = clustered[clustered_indices]
457
+
458
+ _, cluster_indices = np.unique(clustered, return_index=True)
459
+
460
+ clustered_points = np.split(points, cluster_indices[1:])
461
+ clustered_keys = np.split(point_keys, cluster_indices[1:])
462
+
463
+ biggest_cluster_index = np.argmax([len(i) for i in clustered_points])
464
+ # biggest_cluster = clustered_points[biggest_cluster_index]
465
+ biggest_cluster_keys = clustered_keys[biggest_cluster_index]
466
+ biggest_cluster_keys = set(biggest_cluster_keys)
467
+
468
  for i, (gest, depthcm, K, R, t, imagekey) in enumerate(zip(entry['gestalt'],
469
  entry['depthcm'],
470
  entry['K'],
 
483
  continue
484
  belonging_points = []
485
  for i in image_dict[imagekey].point3D_ids[np.where(image_dict[imagekey].point3D_ids != -1)]:
486
+ if not too_big:
487
+ if i in biggest_cluster_keys:
488
+ belonging_points.append(entry["points3d"][i])
489
+ else:
490
+ belonging_points.append(entry["points3d"][i])
491
 
492
  if len(belonging_points) < 1:
493
  print(f'No 3D points in image {i}')
script.py CHANGED
@@ -132,7 +132,7 @@ if __name__ == "__main__":
132
  point_radius=25,
133
  max_angle=15,
134
  extend=30,
135
- merge_th=3.0,
136
  min_missing_distance=30000000.0,
137
  scale_estimation_coefficient=2.54,
138
  ))
 
132
  point_radius=25,
133
  max_angle=15,
134
  extend=30,
135
+ merge_th=100.0,
136
  min_missing_distance=30000000.0,
137
  scale_estimation_coefficient=2.54,
138
  ))