Siromanec commited on
Commit
dcd3aa9
·
1 Parent(s): 977f1b4

improved apex detection algorithm

Browse files
Files changed (1) hide show
  1. handcrafted_solution.py +87 -28
handcrafted_solution.py CHANGED
@@ -11,11 +11,68 @@ from scipy.spatial.distance import cdist
11
  from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
12
  from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
13
 
 
 
 
 
 
 
 
14
 
15
  def empty_solution():
16
  '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
17
  return np.zeros((2,3)), [(0, 1)]
18
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  def convert_entry_to_human_readable(entry):
21
  out = {}
@@ -42,34 +99,34 @@ def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
42
  vertices = []
43
  connections = []
44
  # Apex
45
- apex_color = np.array(gestalt_color_mapping['apex'])
46
- apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
47
- if apex_mask.sum() > 0:
48
- output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
49
- (numLabels, labels, stats, centroids) = output
50
- stats, centroids = stats[1:], centroids[1:]
51
-
52
- for i in range(numLabels-1):
53
- vert = {"xy": centroids[i], "type": "apex"}
54
- vertices.append(vert)
55
-
56
- eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
57
- eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
58
- if eave_end_mask.sum() > 0:
59
- output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
60
- (numLabels, labels, stats, centroids) = output
61
- stats, centroids = stats[1:], centroids[1:]
62
-
63
- for i in range(numLabels-1):
64
- vert = {"xy": centroids[i], "type": "eave_end_point"}
65
- vertices.append(vert)
 
 
66
  # Connectivity
67
- apex_pts = []
68
- apex_pts_idxs = []
69
- for j, v in enumerate(vertices):
70
- apex_pts.append(v['xy'])
71
- apex_pts_idxs.append(j)
72
- apex_pts = np.array(apex_pts)
73
 
74
  # Ridge connects two apex points
75
  for edge_class in ['eave', 'ridge', 'rake', 'valley']:
@@ -106,6 +163,8 @@ def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
106
  for a_i, a in enumerate(connected_verts):
107
  for b in connected_verts[a_i+1:]:
108
  connections.append((a, b))
 
 
109
  return vertices, connections
110
 
111
  def get_uv_depth(vertices, depth):
 
11
  from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
12
  from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
13
 
14
+ apex_color = gestalt_color_mapping["apex"]
15
+ eave_end_point = gestalt_color_mapping["eave_end_point"]
16
+ flashing_end_point = gestalt_color_mapping["flashing_end_point"]
17
+
18
+ apex_color, eave_end_point, flashing_end_point = [np.array(i) for i in [apex_color, eave_end_point, flashing_end_point]]
19
+ unclassified = np.array([(215, 62, 138)])
20
+ line_classes = ['eave', 'ridge', 'rake', 'valley']
21
 
22
  def empty_solution():
23
  '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
24
  return np.zeros((2,3)), [(0, 1)]
25
+
26
+
27
+
28
+ def undesired_objects(image):
29
+ image = image.astype('uint8')
30
+ nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8)
31
+ sizes = stats[:, -1]
32
+ max_label = 1
33
+ max_size = sizes[1]
34
+ for i in range(2, nb_components):
35
+ if sizes[i] > max_size:
36
+ max_label = i
37
+ max_size = sizes[i]
38
+
39
+ img2 = np.zeros(output.shape)
40
+ img2[output == max_label] = 1
41
+ return img2
42
+
43
+ def clean_image(image_gestalt) -> np.ndarray:
44
+ # clears image in from of unclassified and disconected components
45
+ image_gestalt = np.array(image_gestalt)
46
+ unclassified_mask = cv2.inRange(image_gestalt, unclassified + 0.0, unclassified + 0.8)
47
+ unclassified_mask = cv2.bitwise_not(unclassified_mask)
48
+ mask = undesired_objects(unclassified_mask).astype(np.uint8)
49
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((11, 11), np.uint8), iterations=11)
50
+
51
+ image_gestalt[:, :, 0] *= mask
52
+ image_gestalt[:, :, 1] *= mask
53
+ image_gestalt[:, :, 2] *= mask
54
+ return image_gestalt
55
+
56
+
57
+ def get_vertices(image_gestalt, *, color_range=4., dialations=3, erosions=1, kernel_size=13):
58
+
59
+ apex_mask = cv2.inRange(image_gestalt, apex_color - color_range, apex_color + color_range)
60
+ eave_end_point_mask = cv2.inRange(image_gestalt, eave_end_point - color_range, eave_end_point + color_range)
61
+ # flashing_end_point_mask = cv2.inRange(image_gestalt, flashing_end_point - color_range, flashing_end_point + color_range)
62
+ # eave_end_point_mask = cv2.bitwise_or(eave_end_point_mask, flashing_end_point_mask)
63
+
64
+ kernel = np.ones((kernel_size, kernel_size), np.uint8)
65
+
66
+ apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
67
+ apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)
68
+
69
+ eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
70
+ eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)
71
+
72
+ *_, apex_centroids = cv2.connectedComponentsWithStats(apex_mask, connectivity=8)
73
+ *_, other_centroids = cv2.connectedComponentsWithStats(eave_end_point_mask, connectivity=8)
74
+
75
+ return [apex_centroids[1:], other_centroids[1:]]
76
 
77
  def convert_entry_to_human_readable(entry):
78
  out = {}
 
99
  vertices = []
100
  connections = []
101
  # Apex
102
+ gest_seg_np = clean_image(gest_seg_np)
103
+ apex_centroids, eave_end_point_centroids = get_vertices(gest_seg_np)
104
+ # apex_color = np.array(gestalt_color_mapping['apex'])
105
+ # apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
106
+ # if apex_mask.sum() > 0:
107
+ # output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
108
+ # (numLabels, labels, stats, centroids) = output
109
+ # stats, centroids = stats[1:], centroids[1:]
110
+ #
111
+ # for i in range(numLabels-1):
112
+ # vert = {"xy": centroids[i], "type": "apex"}
113
+ # vertices.append(vert)
114
+ #
115
+ # eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
116
+ # eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
117
+ # if eave_end_mask.sum() > 0:
118
+ # output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
119
+ # (numLabels, labels, stats, centroids) = output
120
+ # stats, centroids = stats[1:], centroids[1:]
121
+ #
122
+ # for i in range(numLabels-1):
123
+ # vert = {"xy": centroids[i], "type": "eave_end_point"}
124
+ # vertices.append(vert)
125
  # Connectivity
126
+ # apex_pts = []
127
+ # for j, v in enumerate(vertices):
128
+ # apex_pts.append(v['xy'])
129
+ apex_pts = np.concatenate([apex_centroids, eave_end_point_centroids])
 
 
130
 
131
  # Ridge connects two apex points
132
  for edge_class in ['eave', 'ridge', 'rake', 'valley']:
 
163
  for a_i, a in enumerate(connected_verts):
164
  for b in connected_verts[a_i+1:]:
165
  connections.append((a, b))
166
+ vertices = [{"xy": v, "type": "apex"} for v in apex_centroids]
167
+ vertices += [{"xy": v, "type": "eave_end_point"} for v in eave_end_point_centroids]
168
  return vertices, connections
169
 
170
  def get_uv_depth(vertices, depth):