# Description: This file contains the handcrafted solution for the task of wireframe reconstruction import io from collections import defaultdict from typing import Tuple, List import cv2 import numpy as np from PIL import Image as PImage from hoho.color_mappings import gestalt_color_mapping from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary from scipy.spatial.distance import cdist apex_color = gestalt_color_mapping["apex"] eave_end_point = gestalt_color_mapping["eave_end_point"] flashing_end_point = gestalt_color_mapping["flashing_end_point"] apex_color, eave_end_point, flashing_end_point = [np.array(i) for i in [apex_color, eave_end_point, flashing_end_point]] unclassified = np.array([(215, 62, 138)]) line_classes = ['eave', 'ridge', 'rake', 'valley'] def empty_solution(): '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.''' return np.zeros((2, 3)), [(0, 1)] def undesired_objects(image): image = image.astype('uint8') nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8) sizes = stats[:, -1] max_label = 1 max_size = sizes[1] for i in range(2, nb_components): if sizes[i] > max_size: max_label = i max_size = sizes[i] img2 = np.zeros(output.shape) img2[output == max_label] = 1 return img2 def clean_image(image_gestalt) -> np.ndarray: # clears image in from of unclassified and disconected components image_gestalt = np.array(image_gestalt) unclassified_mask = cv2.inRange(image_gestalt, unclassified + 0.0, unclassified + 0.8) unclassified_mask = cv2.bitwise_not(unclassified_mask) mask = undesired_objects(unclassified_mask).astype(np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((11, 11), np.uint8), iterations=11) image_gestalt[:, :, 0] *= mask image_gestalt[:, :, 1] *= mask image_gestalt[:, :, 2] *= mask return image_gestalt def get_vertices(image_gestalt, *, color_range=4., dialations=3, erosions=1, kernel_size=13): apex_mask = cv2.inRange(image_gestalt, apex_color - color_range, apex_color + color_range) eave_end_point_mask = cv2.inRange(image_gestalt, eave_end_point - color_range, eave_end_point + color_range) flashing_end_point_mask = cv2.inRange(image_gestalt, flashing_end_point - color_range, flashing_end_point + color_range) eave_end_point_mask = cv2.bitwise_or(eave_end_point_mask, flashing_end_point_mask) kernel = np.ones((kernel_size, kernel_size), np.uint8) apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_DILATE, kernel, iterations=dialations) apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_ERODE, kernel, iterations=erosions) eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_DILATE, kernel, iterations=dialations) eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_ERODE, kernel, iterations=erosions) *_, apex_centroids = cv2.connectedComponentsWithStats(apex_mask, connectivity=8, stats=cv2.CV_32S) *_, other_centroids = cv2.connectedComponentsWithStats(eave_end_point_mask, connectivity=8, stats=cv2.CV_32S) return apex_centroids[1:], other_centroids[1:], apex_mask, eave_end_point_mask def convert_entry_to_human_readable(entry): out = {} already_good = {'__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't'} for k, v in entry.items(): if k in already_good: out[k] = v continue match k: case 'points3d': out[k] = read_points3D_binary(fid=io.BytesIO(v)) case 'cameras': out[k] = read_cameras_binary(fid=io.BytesIO(v)) case 'images': out[k] = read_images_binary(fid=io.BytesIO(v)) case 'ade20k' | 'gestalt': out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v] case 'depthcm': out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']] return out def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th=50.0): '''Get the vertices and edges from the gestalt segmentation mask of the house''' # Apex color_range = 8. connections = [] edge_th = edge_th ** 2 apex_centroids, eave_end_point_centroids, apex_mask, eave_end_point_mask = get_vertices(gest_seg_np) apex_pts = np.concatenate([apex_centroids, eave_end_point_centroids]) vertex_mask = np.zeros_like(apex_mask) for i in apex_centroids: cv2.circle(vertex_mask, np.round(i).astype(np.uint32), 20, (255,), 40, -1) for i in eave_end_point_centroids: cv2.circle(vertex_mask, np.round(i).astype(np.uint32), 15, (255,), 30, -1) vertex_mask = np.bitwise_not(vertex_mask) for edge_class in ['eave', 'ridge', 'rake', 'valley', 'flashing']: if (len(apex_pts) < 2): break edge_color = np.array(gestalt_color_mapping[edge_class]) mask = cv2.inRange(gest_seg_np, edge_color - color_range, edge_color + color_range) mask = cv2.bitwise_and(mask, vertex_mask) mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, np.ones((11, 11)), iterations=2) if edge_class == "ridge": mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, np.ones((11, 11)), iterations=1) if np.any(mask): rho = 1 # distance resolution in pixels of the Hough grid theta = np.pi / 180 # angular resolution in radians of the Hough grid threshold = 15 # minimum number of votes (intersections in Hough grid cell) min_line_length = 40 # minimum number of pixels making up a line max_line_gap = 30 # maximum gap in pixels between connectable line segments # Run Hough on edge detected image # Output "lines" is an array containing endpoints of detected line segments lines = cv2.HoughLinesP(mask, rho, theta, threshold, np.array([]), min_line_length, max_line_gap) edges = [] for line in lines if lines is not None else []: for x1, y1, x2, y2 in line: edges.append((x1, y1, x2, y2)) edges = np.array(edges) if len(edges) < 1: continue begin_distances = cdist(apex_pts, edges[:, :2], metric="sqeuclidean") end_distances = cdist(apex_pts, edges[:, 2:], metric="sqeuclidean") begin_closest_points = np.argmin(begin_distances, axis=0) # index of the closest point for each edge end point end_closest_points = np.argmin(end_distances, axis=0) begin_closest_point_distances = begin_distances[begin_closest_points, np.arange(len(begin_closest_points))] end_closest_point_distances = end_distances[end_closest_points, np.arange(len(end_closest_points))] begin_in_range_mask = begin_closest_point_distances < edge_th end_in_range_mask = end_closest_point_distances < edge_th # where both ends are in range in_range_connected_mask = np.logical_and(begin_in_range_mask, end_in_range_mask) edge_idxs = np.where(in_range_connected_mask)[0] unique_edges = np.unique(np.array([begin_closest_points[edge_idxs], end_closest_points[edge_idxs]]).T, axis=0) connections.extend(unique_edges) vertices = [{"xy": v, "type": "apex"} for v in apex_centroids] vertices += [{"xy": v, "type": "eave_end_point"} for v in eave_end_point_centroids] return vertices, connections def get_uv_depth(vertices, depth): '''Get the depth of the vertices from the depth image''' uv = [] for v in vertices: uv.append(v['xy']) uv = np.array(uv) uv_int = uv.astype(np.int32) H, W = depth.shape[:2] uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W - 1) uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H - 1) vertex_depth = depth[(uv_int[:, 1], uv_int[:, 0])] return uv, vertex_depth def merge_vertices_3d(vert_edge_per_image, th=0.1): '''Merge vertices that are close to each other in 3D space and are of same types''' all_3d_vertices = [] connections_3d = [] all_indexes = [] cur_start = 0 types = [] for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items(): types += [int(v['type'] == 'apex') for v in vertices] all_3d_vertices.append(vertices_3d) connections_3d += [(x + cur_start, y + cur_start) for (x, y) in connections] cur_start += len(vertices_3d) all_3d_vertices = np.concatenate(all_3d_vertices, axis=0) # print (connections_3d) distmat = cdist(all_3d_vertices, all_3d_vertices) types = np.array(types).reshape(-1, 1) same_types = cdist(types, types) mask_to_merge = (distmat <= th) & (same_types == 0) new_vertices = [] new_connections = [] to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge]))) to_merge_final = defaultdict(list) for i in range(len(all_3d_vertices)): for j in to_merge: if i in j: to_merge_final[i] += j for k, v in to_merge_final.items(): to_merge_final[k] = list(set(v)) already_there = set() merged = [] for k, v in to_merge_final.items(): if k in already_there: continue merged.append(v) for vv in v: already_there.add(vv) old_idx_to_new = {} count = 0 for idxs in merged: new_vertices.append(all_3d_vertices[idxs].mean(axis=0)) for idx in idxs: old_idx_to_new[idx] = count count += 1 # print (connections_3d) new_vertices = np.array(new_vertices) # print (connections_3d) for conn in connections_3d: new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]])) if new_con[0] == new_con[1]: continue if new_con not in new_connections: new_connections.append(new_con) # print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}') return new_vertices, new_connections def prune_not_connected(all_3d_vertices, connections_3d): '''Prune vertices that are not connected to any other vertex''' connected = defaultdict(list) for c in connections_3d: connected[c[0]].append(c) connected[c[1]].append(c) new_indexes = {} new_verts = [] connected_out = [] for k, v in connected.items(): vert = all_3d_vertices[k] if tuple(vert) not in new_verts: new_verts.append(tuple(vert)) new_indexes[k] = len(new_verts) - 1 for k, v in connected.items(): for vv in v: connected_out.append((new_indexes[vv[0]], new_indexes[vv[1]])) connected_out = list(set(connected_out)) return np.array(new_verts), connected_out def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]: good_entry = convert_entry_to_human_readable(entry) vert_edge_per_image = {} for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'], good_entry['depthcm'], good_entry['K'], good_entry['R'], good_entry['t'] )): gest_seg = gest.resize(depth.size) gest_seg_np = np.array(gest_seg).astype(np.uint8) # Metric3D depth_np = np.array(depth) / 2.5 # 2.5 is the scale estimation coefficient vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th=70.) if (len(vertices) < 2) or (len(connections) < 1): print(f'Not enough vertices or connections in image {i}') vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3)) continue uv, depth_vert = get_uv_depth(vertices, depth_np) # Normalize the uv to the camera intrinsics xy_local = np.ones((len(uv), 3)) xy_local[:, 0] = (uv[:, 0] - K[0, 2]) / K[0, 0] xy_local[:, 1] = (uv[:, 1] - K[1, 2]) / K[1, 1] # Get the 3D vertices vertices_3d_local = depth_vert[..., None] * (xy_local / np.linalg.norm(xy_local, axis=1)[..., None]) world_to_cam = np.eye(4) world_to_cam[:3, :3] = R world_to_cam[:3, 3] = t.reshape(-1) cam_to_world = np.linalg.inv(world_to_cam) vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world) vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3) vert_edge_per_image[i] = vertices, connections, vertices_3d all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0) all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d) if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1: print(f'Not enough vertices or connections in the 3D vertices') return (good_entry['__key__'], *empty_solution()) if visualize: from hoho.viz3d import plot_estimate_and_gt plot_estimate_and_gt(all_3d_vertices_clean, connections_3d_clean, good_entry['wf_vertices'], good_entry['wf_edges']) return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean