File size: 2,059 Bytes
ff29d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_improved_data_w_ljspeech
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_improved_data_w_ljspeech

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5702

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9234        | 0.8097 | 250  | 0.7694          |
| 0.7666        | 1.6194 | 500  | 0.6657          |
| 0.6923        | 2.4291 | 750  | 0.6291          |
| 0.6783        | 3.2389 | 1000 | 0.6109          |
| 0.6572        | 4.0486 | 1250 | 0.5961          |
| 0.6631        | 4.8583 | 1500 | 0.5909          |
| 0.6413        | 5.6680 | 1750 | 0.5809          |
| 0.6471        | 6.4777 | 2000 | 0.5798          |
| 0.6336        | 7.2874 | 2250 | 0.5733          |
| 0.6353        | 8.0972 | 2500 | 0.5723          |
| 0.6257        | 8.9069 | 2750 | 0.5700          |
| 0.632         | 9.7166 | 3000 | 0.5702          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.2
- Datasets 2.17.0
- Tokenizers 0.19.1