Skanderbeg commited on
Commit
33bba94
·
1 Parent(s): 1ccf684

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1318.05 +/- 153.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b2c4d009e5d9ad3666bac09e197a69ff85790e4765b949ce33bbd5f39520e66
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f647ff61ea0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f647ff61f30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f647ff61fc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f647ff62050>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f647ff620e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f647ff62170>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f647ff62200>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f647ff62290>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f647ff62320>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f647ff623b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f647ff62440>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f647ff624d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f647ff65180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1685857733499099875,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC4w9b0NkEK9wDcWP1uG9T4p/AE/M9o9PxUgiD4nH+G+g+d5PW6hpD/Zy009oVFUP66nk75v+Fg/M22JPK4UKD6mRFm+hB3QPgHnKj+UUqw8MAWkPhEYML6ZSsA+3Bd+Pi8xab/W7Ao/RoqgPlGmKT+EkUG+aggNP6uheD2OtC8/8VwGP+CJYT8jaE0+UVfjvidcc76Yr1S+JG+CvZ9Slj4xyyK/JaUeP4skBb3Xa5o9RfMNv7QfpL51+So/2jDbPLAWVT71eAm/i12mPiAokj4vMWm/1uwKP0aKoD5Rpik/Ut75PoXt0T5MRmA+84gQP+ZlEz/zwHg/bkgTP0NWKb+38Jo+yHJ3v4UgSj9dgte/JehNv1aLgz9fK1W/WS6/vWMZC7/zv3A/Y/IqP5hszTyFwbw+Rh+3vlczZj/sUGg+LzFpv9bsCj9GiqA+UaYpP5wLrz1lrZY/MZCMvxbc5j/wqAs/5GoJP/GL/b2Q+4O/R+d6P3aL3L2o7V4/+5gQPfCQtL+E1+c+LVSevYa8gr6YNxY+nTm9vuqbKj9Cmdw8BKwfP766DcC9EJY+jBcaQC8xab/W7Ao/RoqgPqUmwb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABY3Re2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOk7wPQAAAAAE4uu/AAAAALqsmb0AAAAApbHnPwAAAAAb7Tm8AAAAAOL12T8AAAAAIlPYvQAAAADIH/e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/TzVtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHvLV70AAAAAOfPgvwAAAAATZe69AAAAANTT/j8AAAAAcUTHvQAAAAB5xfw/AAAAADM15D0AAAAASOH0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHvdILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA2FV08AAAAAJ4b578AAAAAWZC4uwAAAAA0XNw/AAAAAKy9t7wAAAAAoPnpPwAAAACZqHo9AAAAADcM5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcA8c0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALRrWPQAAAADT4dy/AAAAAHmk6z0AAAAAAsfjPwAAAACbW0k9AAAAAEov2z8AAAAA7aZLPQAAAACOh9+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH+AnEMspXqMAWyUTegDjAF0lEdAqaY7awljVnV9lChoBkdAkVroUJv5xmgHTegDaAhHQKmpNAzHjp91fZQoaAZHQJGgTgxagVZoB03oA2gIR0CpqXyV4X41dX2UKGgGR0CSuTZtvXK9aAdN6ANoCEdAqasipFTef3V9lChoBkdAlBoCO3lS0mgHTegDaAhHQKm1J8Rcu8N1fZQoaAZHQJLnXgTAWSFoB03oA2gIR0Cpt0PYWcjJdX2UKGgGR0CSoHcxCY1HaAdN6ANoCEdAqbd5XfZVXHV9lChoBkdAk7DZyU9py2gHTegDaAhHQKm4jqCYkVx1fZQoaAZHQJR4hdZ7ojhoB03oA2gIR0CpwSNYbKigdX2UKGgGR0CUCwgeii7DaAdN6ANoCEdAqcMq1y/9HnV9lChoBkdAlG23yqdYn2gHTegDaAhHQKnDdIjnmq51fZQoaAZHQJRZVb5dnkFoB03oA2gIR0CpxP0ZeiSJdX2UKGgGR0CTorYCQtBfaAdN6ANoCEdAqdCPpjc2znV9lChoBkdAkaLvegte2WgHTegDaAhHQKnSrG7SRbN1fZQoaAZHQJOkSV6eGwloB03oA2gIR0Cp0t7PppvhdX2UKGgGR0CSUdAmReTnaAdN6ANoCEdAqdQBbyH2y3V9lChoBkdAiybMfzSThmgHTegDaAhHQKncuUi6g/V1fZQoaAZHQJJ/Ovkili1oB03oA2gIR0Cp3s7IkqtpdX2UKGgGR0CStETPSlWPaAdN6ANoCEdAqd8AW+GoJnV9lChoBkdAkgZXNC7btmgHTegDaAhHQKngGNgjQiR1fZQoaAZHQJNqy5rgwXZoB03oA2gIR0Cp7Dx2bG3ndX2UKGgGR0CRsQIyj59FaAdN6ANoCEdAqe5ZPKuB+XV9lChoBkdAkg/nm/336GgHTegDaAhHQKnuiZZSvTx1fZQoaAZHQJJ3w5R0lqtoB03oA2gIR0Cp75xCIDYAdX2UKGgGR0CRvWiyprDZaAdN6ANoCEdAqfhZL9MsYnV9lChoBkdAkzEOZssQNGgHTegDaAhHQKn6a/tY0VJ1fZQoaAZHQI/WqIcinpBoB03oA2gIR0Cp+p5PM0P6dX2UKGgGR0CT7Xd30PH1aAdN6ANoCEdAqfu0+NcW03V9lChoBkdAlFH6sU7CBWgHTegDaAhHQKoGYvV3EAJ1fZQoaAZHQJCNnvqkdmxoB03oA2gIR0CqCcAQpWmxdX2UKGgGR0CSCc+ERJ2/aAdN6ANoCEdAqgoGlyimEXV9lChoBkdAku1HMlkYoGgHTegDaAhHQKoLdC4z7/J1fZQoaAZHQJTFxV3ljmVoB03oA2gIR0CqFA/vOQhfdX2UKGgGR0CQ4+FVDKHPaAdN6ANoCEdAqhYpwKjSHHV9lChoBkdAjOP5p8F6iWgHTegDaAhHQKoWWFlCkXV1fZQoaAZHQI761CAtnPFoB03oA2gIR0CqF2iwKSgXdX2UKGgGR0CHqxuUliSaaAdN6ANoCEdAqiBq9bor4HV9lChoBkdAhuKmAbyYomgHTegDaAhHQKojYhsZYPp1fZQoaAZHQJGKjH6uW8hoB03oA2gIR0CqI6l5WzWxdX2UKGgGR0CUAlhL5AQhaAdN6ANoCEdAqiVRrvb48HV9lChoBkdAkKJQYYR/VmgHTegDaAhHQKovcjqv/zd1fZQoaAZHQIvMsyeqaPVoB03oA2gIR0CqMZMY2sJZdX2UKGgGR0CWjVsmOU+taAdN6ANoCEdAqjHBm5DqnnV9lChoBkdAjPR44Qz1smgHTegDaAhHQKoy4c3l0YF1fZQoaAZHQItNSdUbT+hoB03oA2gIR0CqO3GoaUA1dX2UKGgGR0CTTGw+dK/VaAdN6ANoCEdAqj2DNMXaanV9lChoBkdAiePCbtqpLmgHTegDaAhHQKo9taN+9al1fZQoaAZHQJE2nmzSkTJoB03oA2gIR0CqP0D+R5kcdX2UKGgGR0CRG3BrN4Z/aAdN6ANoCEdAqkrpe7cwg3V9lChoBkdAkPZTrRjSX2gHTegDaAhHQKpM+3Ns3yZ1fZQoaAZHQJIAr1M/QjVoB03oA2gIR0CqTSheHBUJdX2UKGgGR0CSRfSJj2BbaAdN6ANoCEdAqk47F4s3AHV9lChoBkdAk8chvaURnWgHTegDaAhHQKpXE8f3evZ1fZQoaAZHQJMRlinYQJ5oB03oA2gIR0CqWSmSIP9UdX2UKGgGR0CSdAVrAP/aaAdN6ANoCEdAqllZaxHG0nV9lChoBkdAkA5P8hs672gHTegDaAhHQKpabSro4dZ1fZQoaAZHQJHTlubZvk1oB03oA2gIR0CqZqieEqUedX2UKGgGR0CS9aYrrgO0aAdN6ANoCEdAqmjR/iHZb3V9lChoBkdAjPq3i704BGgHTegDaAhHQKpo//ViF0x1fZQoaAZHQJD5sBkqc3FoB03oA2gIR0CqaiEit7rtdX2UKGgGR0CTi0VlPJq7aAdN6ANoCEdAqnK7tAs053V9lChoBkdAlAb9DUmUn2gHTegDaAhHQKp03VfeDWd1fZQoaAZHQJQadmGucMFoB03oA2gIR0CqdQnRLK3edX2UKGgGR0CUryu1ndweaAdN6ANoCEdAqnYa/ub7THV9lChoBkdAkviXdj5KvmgHTegDaAhHQKqAeNPP9k11fZQoaAZHQJItejDbah9oB03oA2gIR0Cqg6yckMTfdX2UKGgGR0CR/FgPmPo3aAdN6ANoCEdAqoP8HB1s+HV9lChoBkdAkFXEO3DvVmgHTegDaAhHQKqFie6I3zd1fZQoaAZHQJAyYAZKnNxoB03oA2gIR0CqjlUA93bFdX2UKGgGR0CRyQAhje9BaAdN6ANoCEdAqpBxPVNHpnV9lChoBkdAkZX7haTwD2gHTegDaAhHQKqQn91loUV1fZQoaAZHQJNW2EcsDnxoB03oA2gIR0CqkamgBcRldX2UKGgGR0CU3tAS39aVaAdN6ANoCEdAqpq2gYgq3HV9lChoBkdAkrDhInSfDmgHTegDaAhHQKqdqqZtvXN1fZQoaAZHQJOo8QwsXi1oB03oA2gIR0CqnfOtOmBOdX2UKGgGR0CTiY7PIGQkaAdN6ANoCEdAqp+mVTrE+HV9lChoBkdAk+OlFMIu5GgHTegDaAhHQKqp/x2B8QZ1fZQoaAZHQJQ9U71ZkkNoB03oA2gIR0CqrBfzreImdX2UKGgGR0CU95DVH4GmaAdN6ANoCEdAqqxJ5NXYDnV9lChoBkdAkXhcZpBX0WgHTegDaAhHQKqtW94/u9h1fZQoaAZHQJNROD/VAiVoB03oA2gIR0CqtdgT7EYPdX2UKGgGR0CT1fpT/ACXaAdN6ANoCEdAqrfjo8p1BHV9lChoBkdAlCPOYD1XeWgHTegDaAhHQKq4Ik690zV1fZQoaAZHQJRnP6j3225oB03oA2gIR0CquapTMqz7dX2UKGgGR0CQgUEcsDnvaAdN6ANoCEdAqsVufdyksXV9lChoBkdAlejv1pTMq2gHTegDaAhHQKrHfIuGsWB1fZQoaAZHQJSP9VLi++NoB03oA2gIR0Cqx6xjawljdX2UKGgGR0CUb5UpNKywaAdN6ANoCEdAqsjXzFuNxXV9lChoBkdAlJPBVU+9rWgHTegDaAhHQKrRqnP3SKF1fZQoaAZHQJQ05h5PdmBoB03oA2gIR0Cq07vBBRhudX2UKGgGR0CVSOzGxUvPaAdN6ANoCEdAqtPpwAEMb3V9lChoBkdAlHUerp7kXGgHTegDaAhHQKrU/vhIe5p1fZQoaAZHQJSjaVTrE+BoB03oA2gIR0Cq4V5G8VYZdX2UKGgGR0CKSu+otL+QaAdN6ANoCEdAquN6u8scyXV9lChoBkdAk0NS2+fyw2gHTegDaAhHQKrjp1+RYA91fZQoaAZHQJJ+tQwblzVoB03oA2gIR0Cq5LntOVPfdX2UKGgGR0CUFySv1UVBaAdN6ANoCEdAqu1cjX4CZHV9lChoBkdAlH2zaCcwxmgHTegDaAhHQKrvb4oqkM11fZQoaAZHQJd0BW4mTkhoB03oA2gIR0Cq754t6HCXdX2UKGgGR0CSjEHbAUL2aAdN6ANoCEdAqvCpzvJA+3VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:908605c2bcdd056e0e8a8f4d392a0bfaeec3fae4d9941f68964701d9729ce5e4
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c06aa1f5d58304319566fd00d4f6be6ce42134f905fc29ab6c35e849024213d
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f647ff61ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f647ff61f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f647ff61fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f647ff62050>", "_build": "<function ActorCriticPolicy._build at 0x7f647ff620e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f647ff62170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f647ff62200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f647ff62290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f647ff62320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f647ff623b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f647ff62440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f647ff624d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f647ff65180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685857733499099875, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC4w9b0NkEK9wDcWP1uG9T4p/AE/M9o9PxUgiD4nH+G+g+d5PW6hpD/Zy009oVFUP66nk75v+Fg/M22JPK4UKD6mRFm+hB3QPgHnKj+UUqw8MAWkPhEYML6ZSsA+3Bd+Pi8xab/W7Ao/RoqgPlGmKT+EkUG+aggNP6uheD2OtC8/8VwGP+CJYT8jaE0+UVfjvidcc76Yr1S+JG+CvZ9Slj4xyyK/JaUeP4skBb3Xa5o9RfMNv7QfpL51+So/2jDbPLAWVT71eAm/i12mPiAokj4vMWm/1uwKP0aKoD5Rpik/Ut75PoXt0T5MRmA+84gQP+ZlEz/zwHg/bkgTP0NWKb+38Jo+yHJ3v4UgSj9dgte/JehNv1aLgz9fK1W/WS6/vWMZC7/zv3A/Y/IqP5hszTyFwbw+Rh+3vlczZj/sUGg+LzFpv9bsCj9GiqA+UaYpP5wLrz1lrZY/MZCMvxbc5j/wqAs/5GoJP/GL/b2Q+4O/R+d6P3aL3L2o7V4/+5gQPfCQtL+E1+c+LVSevYa8gr6YNxY+nTm9vuqbKj9Cmdw8BKwfP766DcC9EJY+jBcaQC8xab/W7Ao/RoqgPqUmwb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABY3Re2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOk7wPQAAAAAE4uu/AAAAALqsmb0AAAAApbHnPwAAAAAb7Tm8AAAAAOL12T8AAAAAIlPYvQAAAADIH/e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/TzVtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHvLV70AAAAAOfPgvwAAAAATZe69AAAAANTT/j8AAAAAcUTHvQAAAAB5xfw/AAAAADM15D0AAAAASOH0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHvdILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA2FV08AAAAAJ4b578AAAAAWZC4uwAAAAA0XNw/AAAAAKy9t7wAAAAAoPnpPwAAAACZqHo9AAAAADcM5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcA8c0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALRrWPQAAAADT4dy/AAAAAHmk6z0AAAAAAsfjPwAAAACbW0k9AAAAAEov2z8AAAAA7aZLPQAAAACOh9+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH+AnEMspXqMAWyUTegDjAF0lEdAqaY7awljVnV9lChoBkdAkVroUJv5xmgHTegDaAhHQKmpNAzHjp91fZQoaAZHQJGgTgxagVZoB03oA2gIR0CpqXyV4X41dX2UKGgGR0CSuTZtvXK9aAdN6ANoCEdAqasipFTef3V9lChoBkdAlBoCO3lS0mgHTegDaAhHQKm1J8Rcu8N1fZQoaAZHQJLnXgTAWSFoB03oA2gIR0Cpt0PYWcjJdX2UKGgGR0CSoHcxCY1HaAdN6ANoCEdAqbd5XfZVXHV9lChoBkdAk7DZyU9py2gHTegDaAhHQKm4jqCYkVx1fZQoaAZHQJR4hdZ7ojhoB03oA2gIR0CpwSNYbKigdX2UKGgGR0CUCwgeii7DaAdN6ANoCEdAqcMq1y/9HnV9lChoBkdAlG23yqdYn2gHTegDaAhHQKnDdIjnmq51fZQoaAZHQJRZVb5dnkFoB03oA2gIR0CpxP0ZeiSJdX2UKGgGR0CTorYCQtBfaAdN6ANoCEdAqdCPpjc2znV9lChoBkdAkaLvegte2WgHTegDaAhHQKnSrG7SRbN1fZQoaAZHQJOkSV6eGwloB03oA2gIR0Cp0t7PppvhdX2UKGgGR0CSUdAmReTnaAdN6ANoCEdAqdQBbyH2y3V9lChoBkdAiybMfzSThmgHTegDaAhHQKncuUi6g/V1fZQoaAZHQJJ/Ovkili1oB03oA2gIR0Cp3s7IkqtpdX2UKGgGR0CStETPSlWPaAdN6ANoCEdAqd8AW+GoJnV9lChoBkdAkgZXNC7btmgHTegDaAhHQKngGNgjQiR1fZQoaAZHQJNqy5rgwXZoB03oA2gIR0Cp7Dx2bG3ndX2UKGgGR0CRsQIyj59FaAdN6ANoCEdAqe5ZPKuB+XV9lChoBkdAkg/nm/336GgHTegDaAhHQKnuiZZSvTx1fZQoaAZHQJJ3w5R0lqtoB03oA2gIR0Cp75xCIDYAdX2UKGgGR0CRvWiyprDZaAdN6ANoCEdAqfhZL9MsYnV9lChoBkdAkzEOZssQNGgHTegDaAhHQKn6a/tY0VJ1fZQoaAZHQI/WqIcinpBoB03oA2gIR0Cp+p5PM0P6dX2UKGgGR0CT7Xd30PH1aAdN6ANoCEdAqfu0+NcW03V9lChoBkdAlFH6sU7CBWgHTegDaAhHQKoGYvV3EAJ1fZQoaAZHQJCNnvqkdmxoB03oA2gIR0CqCcAQpWmxdX2UKGgGR0CSCc+ERJ2/aAdN6ANoCEdAqgoGlyimEXV9lChoBkdAku1HMlkYoGgHTegDaAhHQKoLdC4z7/J1fZQoaAZHQJTFxV3ljmVoB03oA2gIR0CqFA/vOQhfdX2UKGgGR0CQ4+FVDKHPaAdN6ANoCEdAqhYpwKjSHHV9lChoBkdAjOP5p8F6iWgHTegDaAhHQKoWWFlCkXV1fZQoaAZHQI761CAtnPFoB03oA2gIR0CqF2iwKSgXdX2UKGgGR0CHqxuUliSaaAdN6ANoCEdAqiBq9bor4HV9lChoBkdAhuKmAbyYomgHTegDaAhHQKojYhsZYPp1fZQoaAZHQJGKjH6uW8hoB03oA2gIR0CqI6l5WzWxdX2UKGgGR0CUAlhL5AQhaAdN6ANoCEdAqiVRrvb48HV9lChoBkdAkKJQYYR/VmgHTegDaAhHQKovcjqv/zd1fZQoaAZHQIvMsyeqaPVoB03oA2gIR0CqMZMY2sJZdX2UKGgGR0CWjVsmOU+taAdN6ANoCEdAqjHBm5DqnnV9lChoBkdAjPR44Qz1smgHTegDaAhHQKoy4c3l0YF1fZQoaAZHQItNSdUbT+hoB03oA2gIR0CqO3GoaUA1dX2UKGgGR0CTTGw+dK/VaAdN6ANoCEdAqj2DNMXaanV9lChoBkdAiePCbtqpLmgHTegDaAhHQKo9taN+9al1fZQoaAZHQJE2nmzSkTJoB03oA2gIR0CqP0D+R5kcdX2UKGgGR0CRG3BrN4Z/aAdN6ANoCEdAqkrpe7cwg3V9lChoBkdAkPZTrRjSX2gHTegDaAhHQKpM+3Ns3yZ1fZQoaAZHQJIAr1M/QjVoB03oA2gIR0CqTSheHBUJdX2UKGgGR0CSRfSJj2BbaAdN6ANoCEdAqk47F4s3AHV9lChoBkdAk8chvaURnWgHTegDaAhHQKpXE8f3evZ1fZQoaAZHQJMRlinYQJ5oB03oA2gIR0CqWSmSIP9UdX2UKGgGR0CSdAVrAP/aaAdN6ANoCEdAqllZaxHG0nV9lChoBkdAkA5P8hs672gHTegDaAhHQKpabSro4dZ1fZQoaAZHQJHTlubZvk1oB03oA2gIR0CqZqieEqUedX2UKGgGR0CS9aYrrgO0aAdN6ANoCEdAqmjR/iHZb3V9lChoBkdAjPq3i704BGgHTegDaAhHQKpo//ViF0x1fZQoaAZHQJD5sBkqc3FoB03oA2gIR0CqaiEit7rtdX2UKGgGR0CTi0VlPJq7aAdN6ANoCEdAqnK7tAs053V9lChoBkdAlAb9DUmUn2gHTegDaAhHQKp03VfeDWd1fZQoaAZHQJQadmGucMFoB03oA2gIR0CqdQnRLK3edX2UKGgGR0CUryu1ndweaAdN6ANoCEdAqnYa/ub7THV9lChoBkdAkviXdj5KvmgHTegDaAhHQKqAeNPP9k11fZQoaAZHQJItejDbah9oB03oA2gIR0Cqg6yckMTfdX2UKGgGR0CR/FgPmPo3aAdN6ANoCEdAqoP8HB1s+HV9lChoBkdAkFXEO3DvVmgHTegDaAhHQKqFie6I3zd1fZQoaAZHQJAyYAZKnNxoB03oA2gIR0CqjlUA93bFdX2UKGgGR0CRyQAhje9BaAdN6ANoCEdAqpBxPVNHpnV9lChoBkdAkZX7haTwD2gHTegDaAhHQKqQn91loUV1fZQoaAZHQJNW2EcsDnxoB03oA2gIR0CqkamgBcRldX2UKGgGR0CU3tAS39aVaAdN6ANoCEdAqpq2gYgq3HV9lChoBkdAkrDhInSfDmgHTegDaAhHQKqdqqZtvXN1fZQoaAZHQJOo8QwsXi1oB03oA2gIR0CqnfOtOmBOdX2UKGgGR0CTiY7PIGQkaAdN6ANoCEdAqp+mVTrE+HV9lChoBkdAk+OlFMIu5GgHTegDaAhHQKqp/x2B8QZ1fZQoaAZHQJQ9U71ZkkNoB03oA2gIR0CqrBfzreImdX2UKGgGR0CU95DVH4GmaAdN6ANoCEdAqqxJ5NXYDnV9lChoBkdAkXhcZpBX0WgHTegDaAhHQKqtW94/u9h1fZQoaAZHQJNROD/VAiVoB03oA2gIR0CqtdgT7EYPdX2UKGgGR0CT1fpT/ACXaAdN6ANoCEdAqrfjo8p1BHV9lChoBkdAlCPOYD1XeWgHTegDaAhHQKq4Ik690zV1fZQoaAZHQJRnP6j3225oB03oA2gIR0CquapTMqz7dX2UKGgGR0CQgUEcsDnvaAdN6ANoCEdAqsVufdyksXV9lChoBkdAlejv1pTMq2gHTegDaAhHQKrHfIuGsWB1fZQoaAZHQJSP9VLi++NoB03oA2gIR0Cqx6xjawljdX2UKGgGR0CUb5UpNKywaAdN6ANoCEdAqsjXzFuNxXV9lChoBkdAlJPBVU+9rWgHTegDaAhHQKrRqnP3SKF1fZQoaAZHQJQ05h5PdmBoB03oA2gIR0Cq07vBBRhudX2UKGgGR0CVSOzGxUvPaAdN6ANoCEdAqtPpwAEMb3V9lChoBkdAlHUerp7kXGgHTegDaAhHQKrU/vhIe5p1fZQoaAZHQJSjaVTrE+BoB03oA2gIR0Cq4V5G8VYZdX2UKGgGR0CKSu+otL+QaAdN6ANoCEdAquN6u8scyXV9lChoBkdAk0NS2+fyw2gHTegDaAhHQKrjp1+RYA91fZQoaAZHQJJ+tQwblzVoB03oA2gIR0Cq5LntOVPfdX2UKGgGR0CUFySv1UVBaAdN6ANoCEdAqu1cjX4CZHV9lChoBkdAlH2zaCcwxmgHTegDaAhHQKrvb4oqkM11fZQoaAZHQJd0BW4mTkhoB03oA2gIR0Cq754t6HCXdX2UKGgGR0CSjEHbAUL2aAdN6ANoCEdAqvCpzvJA+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81999a9f3b64f9c5da0ed1a48fd13663e77ded649c625c418d539ab214165616
3
+ size 1079266
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1318.0474146537017, "std_reward": 153.45234768212427, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-04T07:22:51.988877"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:494ab6dddad25b086e50797a6142fba30aebcc7b62779bd913e768d27d9f3ac1
3
+ size 2176