Text Generation
Transformers
PyTorch
skywork_moe
custom_code
zhao1iang commited on
Commit
452b672
·
verified ·
1 Parent(s): 9b598e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -9
README.md CHANGED
@@ -5,7 +5,6 @@ license_link: >-
5
  https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf
6
  ---
7
 
8
-
9
  <!-- <div align="center">
10
  <h1>
11
  ✨Skywork
@@ -14,7 +13,7 @@ license_link: >-
14
  <div align="center"><img src="misc/skywork_logo.jpeg" width="550"/></div>
15
 
16
  <p align="center">
17
- 🤗 <a href="https://huggingface.co/Skywork" target="_blank">Hugging Face</a> • 🤖 <a href="https://modelscope.cn/organization/Skywork" target="_blank">ModelScope</a> • 👾 <a href="https://wisemodel.cn/organization/Skywork" target="_blank">Wisemodel</a> • 💬 <a href="https://github.com/SkyworkAI/Skywork/blob/main/misc/wechat.png?raw=true" target="_blank">WeChat</a>• 📜<a href="https://github.com/SkyworkAI/Skywork-MoE/blob/main/skywork-moe-tech-report.pdf" target="_blank">Tech Report</a>
18
  </p>
19
 
20
  <div align="center">
@@ -41,6 +40,7 @@ Skywork-MoE demonstrates comparable or superior performance to models with more
41
 
42
  # Table of contents
43
 
 
44
  - [👨‍💻Benchmark Results](#Benchmark-Results)
45
  - [🏆Demonstration of Hugging Face Model Inference](#Demonstration-of-HuggingFace-Model-Inference)
46
  - [📕Demonstration of vLLM Model Inference](#Demonstration-of-vLLM-Model-Inference)
@@ -48,7 +48,16 @@ Skywork-MoE demonstrates comparable or superior performance to models with more
48
  - [🤝Contact Us and Citation](#Contact-Us-and-Citation)
49
 
50
 
 
 
 
 
 
 
 
 
51
  # Benchmark Results
 
52
  We evaluated Skywork-MoE-Base model on various popular benchmarks, including C-Eval, MMLU, CMMLU, GSM8K, MATH and HumanEval.
53
  <img src="misc/skywork_moe_base_evaluation.png" alt="Image" width="600" height="280">
54
 
@@ -94,15 +103,28 @@ coming soon...
94
 
95
  We provide a method to quickly deploy the Skywork-MoE-Base model based on vllm.
96
 
 
 
97
  You can get the source code in [`vllm`](https://github.com/SkyworkAI/vllm)
98
 
 
99
 
100
  ### Based on local environment
101
 
102
- Some dependencies need to be installed:
 
 
 
 
 
 
 
 
 
103
 
104
  ```shell
105
- pip3 install xformers vllm-flash-attn
 
106
  ```
107
 
108
  Then clone the [`vllm`](https://github.com/SkyworkAI/vllm) provided by skywork:
@@ -115,10 +137,12 @@ cd vllm
115
  Then compile and install vllm:
116
 
117
  ``` shell
 
 
118
  MAX_JOBS=8 python3 setup.py install
119
  ```
120
 
121
- ### Based on docker
122
 
123
  You can use the docker image provided by skywork to run vllm directly:
124
 
@@ -129,7 +153,7 @@ docker pull registry.cn-wulanchabu.aliyuncs.com/triple-mu/skywork-moe-vllm:v1
129
  Then start the container and set the model path and working directory.
130
 
131
  ```shell
132
- model_path="Skywork/Skywork-MoE-Base"
133
  workspace=${PWD}
134
 
135
  docker run \
@@ -142,7 +166,7 @@ docker run \
142
  --privileged=true \
143
  --ulimit stack=67108864 \
144
  --ipc=host \
145
- -v ${model_path}:/Skywork-MoE-Base \
146
  -v ${workspace}:/workspace \
147
  registry.cn-wulanchabu.aliyuncs.com/triple-mu/skywork-moe-vllm:v1
148
  ```
@@ -154,7 +178,7 @@ Now, you can run the Skywork MoE model for fun!
154
  ``` python
155
  from vllm import LLM, SamplingParams
156
 
157
- model_path = 'Skywork/Skywork-MoE-Base'
158
  prompts = [
159
  "The president of the United States is",
160
  "The capital of France is",
@@ -205,10 +229,21 @@ If you find our work helpful, please feel free to cite our paper~
205
  ```
206
  @misc{wei2024skywork,
207
  title={Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models},
208
- author={Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang, Xiaoyu Zhang, Liang Zeng, Xiaokun Wang, Yutuan Ma, Rui Hu, Shuicheng Yan, Han Fang, Yahui Zhou},
 
209
  year={2024},
210
  archivePrefix={arXiv},
211
  primaryClass={cs.CL}
212
  }
213
  ```
214
 
 
 
 
 
 
 
 
 
 
 
 
5
  https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf
6
  ---
7
 
 
8
  <!-- <div align="center">
9
  <h1>
10
  ✨Skywork
 
13
  <div align="center"><img src="misc/skywork_logo.jpeg" width="550"/></div>
14
 
15
  <p align="center">
16
+ 🤗 <a href="https://huggingface.co/Skywork" target="_blank">Hugging Face</a> • 🤖 <a href="https://modelscope.cn/organization/Skywork" target="_blank">ModelScope</a> • 👾 <a href="https://wisemodel.cn/organization/Skywork" target="_blank">Wisemodel</a> • 💬 <a href="https://github.com/SkyworkAI/Skywork/blob/main/misc/wechat.png?raw=true" target="_blank">WeChat</a>• 📜<a href="https://arxiv.org/pdf/2406.06563" target="_blank">Tech Report</a>
17
  </p>
18
 
19
  <div align="center">
 
40
 
41
  # Table of contents
42
 
43
+ - [☁️Download URL](#Download-URL)
44
  - [👨‍💻Benchmark Results](#Benchmark-Results)
45
  - [🏆Demonstration of Hugging Face Model Inference](#Demonstration-of-HuggingFace-Model-Inference)
46
  - [📕Demonstration of vLLM Model Inference](#Demonstration-of-vLLM-Model-Inference)
 
48
  - [🤝Contact Us and Citation](#Contact-Us-and-Citation)
49
 
50
 
51
+ # Download URL
52
+
53
+ | | HuggingFace Model | ModelScope Model | Wisemodel Model |
54
+ |:-------:|:------------------------------------------------------------------------------:|:-----------------------------:|:-----------------------------:|
55
+ | **Skywork-MoE-Base** | 🤗 [Skywork-MoE-Base](https://huggingface.co/Skywork/Skywork-MoE-Base) | 🤖[Skywork-MoE-Base](https://www.modelscope.cn/models/skywork/Skywork-MoE-base) | 👾[Skywork-MoE-Base](https://wisemodel.cn/models/Skywork/Skywork-MoE-base) |
56
+ | **Skywork-MoE-Base-FP8** | 🤗 [Skywork-MoE-Base-FP8](https://huggingface.co/Skywork/Skywork-MoE-Base-FP8) | 🤖[Skywork-MoE-Base-FP8](https://www.modelscope.cn/models/skywork/Skywork-MoE-Base-FP8) | 👾[Skywork-MoE-Base-FP8](https://wisemodel.cn/models/Skywork/Skywork-MoE-Base-FP8) |
57
+ | **Skywork-MoE-Chat** | 😊 [Coming Soon]() | 🤖 | 👾 |
58
+
59
  # Benchmark Results
60
+
61
  We evaluated Skywork-MoE-Base model on various popular benchmarks, including C-Eval, MMLU, CMMLU, GSM8K, MATH and HumanEval.
62
  <img src="misc/skywork_moe_base_evaluation.png" alt="Image" width="600" height="280">
63
 
 
103
 
104
  We provide a method to quickly deploy the Skywork-MoE-Base model based on vllm.
105
 
106
+ Under fp8 precision you can run Skywork-MoE-Base with just only 8*4090.
107
+
108
  You can get the source code in [`vllm`](https://github.com/SkyworkAI/vllm)
109
 
110
+ You can get the fp8 model in [`Skywork-MoE-Base-FP8`](https://huggingface.co/Skywork/Skywork-MoE-Base-FP8)
111
 
112
  ### Based on local environment
113
 
114
+ Since pytorch only supports 4090 using fp8 precision in the nightly version, you need to install the corresponding or newer version of pytorch.
115
+
116
+ ``` shell
117
+ # for cuda12.1
118
+ pip3 install --pre torch pytorch-triton --index-url https://download.pytorch.org/whl/nightly/cu121
119
+ # for cuda12.4
120
+ pip3 install --pre torch pytorch-triton --index-url https://download.pytorch.org/whl/nightly/cu124
121
+ ```
122
+
123
+ Some other dependencies also need to be installed:
124
 
125
  ```shell
126
+ MAX_JOBS=8 pip3 install git+https://github.com/facebookresearch/xformers.git # need to wait for a long time
127
+ pip3 install vllm-flash-attn --no-deps
128
  ```
129
 
130
  Then clone the [`vllm`](https://github.com/SkyworkAI/vllm) provided by skywork:
 
137
  Then compile and install vllm:
138
 
139
  ``` shell
140
+ pip3 install -r requirements-build.txt
141
+ pip3 install -r requirements-cuda.txt
142
  MAX_JOBS=8 python3 setup.py install
143
  ```
144
 
145
+ ### Base on docker
146
 
147
  You can use the docker image provided by skywork to run vllm directly:
148
 
 
153
  Then start the container and set the model path and working directory.
154
 
155
  ```shell
156
+ model_path="Skywork/Skywork-MoE-Base-FP8"
157
  workspace=${PWD}
158
 
159
  docker run \
 
166
  --privileged=true \
167
  --ulimit stack=67108864 \
168
  --ipc=host \
169
+ -v ${model_path}:/Skywork-MoE-Base-FP8 \
170
  -v ${workspace}:/workspace \
171
  registry.cn-wulanchabu.aliyuncs.com/triple-mu/skywork-moe-vllm:v1
172
  ```
 
178
  ``` python
179
  from vllm import LLM, SamplingParams
180
 
181
+ model_path = 'Skywork/Skywork-MoE-Base-FP8'
182
  prompts = [
183
  "The president of the United States is",
184
  "The capital of France is",
 
229
  ```
230
  @misc{wei2024skywork,
231
  title={Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models},
232
+ author={Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang, Xiaoyu Zhang, Liang Zeng, Xiaokun Wang, Yutuan Ma, Rui Hu, Shuicheng Yan, Han Fang, Yahui Zhou},
233
+ url={https://arxiv.org/pdf/2406.06563},
234
  year={2024},
235
  archivePrefix={arXiv},
236
  primaryClass={cs.CL}
237
  }
238
  ```
239
 
240
+ ```
241
+ @article{zhao2024longskywork,
242
+ title={LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models},
243
+ author={Zhao, Liang and Wei, Tianwen and Zeng, Liang and Cheng, Cheng and Yang, Liu and Cheng, Peng and Wang, Lijie and Li, Chenxia and Wu, Xuejie and Zhu, Bo and others},
244
+ journal={arXiv preprint arXiv:2406.00605},
245
+ url={https://arxiv.org/abs/2406.00605},
246
+ year={2024}
247
+ }
248
+ ```
249
+