File size: 198,514 Bytes
f5b1acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: pennylane in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (0.38.0)\n",
      "Requirement already satisfied: numpy<2.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (1.23.5)\n",
      "Requirement already satisfied: scipy in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (1.14.1)\n",
      "Requirement already satisfied: networkx in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (2.5)\n",
      "Requirement already satisfied: rustworkx>=0.14.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (0.15.1)\n",
      "Requirement already satisfied: autograd in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (1.7.0)\n",
      "Requirement already satisfied: toml in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (0.10.2)\n",
      "Requirement already satisfied: appdirs in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (1.4.4)\n",
      "Requirement already satisfied: autoray>=0.6.11 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (0.7.0)\n",
      "Requirement already satisfied: cachetools in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (5.5.0)\n",
      "Requirement already satisfied: pennylane-lightning>=0.38 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (0.38.0)\n",
      "Requirement already satisfied: requests in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (2.32.3)\n",
      "Requirement already satisfied: typing-extensions in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (4.12.2)\n",
      "Requirement already satisfied: packaging in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pennylane) (24.1)\n",
      "Requirement already satisfied: decorator>=4.3.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from networkx->pennylane) (5.1.1)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests->pennylane) (3.4.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests->pennylane) (3.10)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests->pennylane) (2.2.3)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests->pennylane) (2024.8.30)\n"
     ]
    }
   ],
   "source": [
    "!pip install pennylane"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average execution time per iteration: 0.0012 seconds\n"
     ]
    }
   ],
   "source": [
    "import time\n",
    "import numpy as np\n",
    "import networkx as nx\n",
    "import pennylane as qml\n",
    "\n",
    "# Define your AGN graph structure\n",
    "G = nx.hexagonal_lattice_graph(3, 3)\n",
    "nx.set_node_attributes(G, values=0, name=\"state\")\n",
    "\n",
    "# Define the quantum device and circuit\n",
    "dev = qml.device(\"default.qubit\", wires=4)\n",
    "\n",
    "@qml.qnode(dev)\n",
    "def quantum_decision_circuit(theta):\n",
    "    qml.RX(theta[0], wires=0)\n",
    "    qml.RY(theta[1], wires=1)\n",
    "    qml.CNOT(wires=[0, 1])\n",
    "    qml.RY(theta[2], wires=2)\n",
    "    qml.CNOT(wires=[1, 2])\n",
    "    qml.RX(theta[3], wires=3)\n",
    "    return qml.probs(wires=[0, 1, 2, 3])\n",
    "\n",
    "@qml.qnode(dev)\n",
    "def complex_quantum_circuit(theta):\n",
    "    qml.Hadamard(wires=0)\n",
    "    qml.RX(theta[0], wires=0)\n",
    "    qml.CNOT(wires=[0, 1])\n",
    "    qml.RY(theta[1], wires=1)\n",
    "    qml.CRX(theta[2], wires=1, control=0)\n",
    "    qml.T(wires=2)\n",
    "    qml.CNOT(wires=[2, 3])\n",
    "    return qml.probs(wires=[0, 1, 2, 3])\n",
    "\n",
    "# Define benchmarking function\n",
    "def run_benchmark(iterations=100):\n",
    "    total_time = 0\n",
    "    for _ in range(iterations):\n",
    "        # Generate random theta values for the quantum circuit\n",
    "        theta = np.random.rand(4)\n",
    "        \n",
    "        # Start timing\n",
    "        start_time = time.time()\n",
    "        \n",
    "        # Run quantum circuit\n",
    "        probabilities = quantum_decision_circuit(theta)\n",
    "        \n",
    "        # Map probabilities to AGN nodes\n",
    "        for i, node in enumerate(G.nodes()):\n",
    "            G.nodes[node][\"state\"] = probabilities[i % len(probabilities)]\n",
    "        \n",
    "        # End timing\n",
    "        end_time = time.time()\n",
    "        \n",
    "        # Calculate time for this iteration\n",
    "        total_time += (end_time - start_time)\n",
    "    \n",
    "    avg_time = total_time / iterations\n",
    "    print(f\"Average execution time per iteration: {avg_time:.4f} seconds\")\n",
    "\n",
    "# Run the benchmark\n",
    "run_benchmark()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Padded Data:\n",
      " [[0.89209269 0.65063517 0.66753295 0.        ]\n",
      " [0.06997607 0.50499087 0.80499266 0.        ]\n",
      " [0.         0.         0.         0.        ]\n",
      " [0.         0.         0.         0.        ]]\n",
      "Running benchmark with simple circuit:\n",
      "Average execution time per iteration: 0.0010 seconds\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIQ0lEQVR4nO3deVhU5dsH8O+ZlX2THREQccF9JdRc0sTU0la1csu0+tliZmVmamVplqaWabaYlb3ZYmZmmnvu+76CoqjssoMwMHPeP4Y5MDIsg4Nw8Pu5rrmUM2fOeTiDzO1z3+d+BFEURRARERGRVRS1PQAiIiIiOWIQRURERFQNDKKIiIiIqoFBFBEREVE1MIgiIiIiqgYGUURERETVwCCKiIiIqBoYRBERERFVA4MoIiIiompgEEVEsjFz5kwIglDbwyjX9u3bIQgCtm/fXttDkZVevXqhVatWtT2MKhMEAS+++GJtD4PqAAZRRFb64osvIAgCIiIiKtwvOTkZU6ZMQevWreHk5AQ7Ozs0adIEY8aMwa5du8z2/e677yAIAuzs7HD9+vUyx6rqh8zo0aMhCILFh52dnXXfaC3Jy8vDzJkz60wgUtE1Lf0YPXp0bQ/VouDg4DI/B2FhYXj99deRlpZW28MjkjVVbQ+ASG5WrlyJ4OBgHDhwADExMWjSpEmZfQ4cOICBAwciOzsbw4YNw/PPPw+tVovY2FisWbMG3333HXbs2IEePXqYva6goABz5szBZ599Vu3xabVafP3112W2K5XKah/zTsrLy8O7774LwBg8ljZt2jRMmTLljo7nueeeQ9++faWvY2NjMX36dIwfPx733nuvtD00NBQRERG4efMmNBrNHR1jZdq1a4fXXnsNAJCfn4/Dhw9jwYIF2LFjBw4cOFDLoyOSLwZRRFaIjY3Fnj17sHr1ajz33HNYuXIlZsyYYbZPeno6hgwZApVKhWPHjqF58+Zmz8+aNQs///wz7O3tyxy/Xbt2+Oqrr/DWW2/B39+/WmNUqVR4+umnq/Xauk6lUkGlurO/tiIjIxEZGSl9fejQIUyfPh2RkZEWr3NdnPELCAgwG+uzzz4LJycnfPLJJ4iOjkZYWFgtjk4eRFFEfn6+xX+3dPdiOo/ICitXroS7uzsGDhyIxx57DCtXriyzz9KlS5GQkIAFCxaUCaAAYz3F8OHD0blz5zLPTZ06FXq9HnPmzKmR8QPGD4PevXvDy8sLycnJ0nadTofWrVsjNDQUubm50vYff/wRHTt2hL29PTw8PDBs2DBcvXq1zHH379+PAQMGwN3dHY6OjmjTpg0WLlwoPd+rV68yM0uAMV0WHBwMALh8+TK8vLwAAO+++66Ugpo5cyYAyzVRRUVFeP/99xEaGgqtVovg4GBMnToVBQUFZvsFBwdj0KBB2LVrF7p06QI7Ozs0btwY33//vVXXryKWaqJMqdgTJ06gZ8+ecHBwQJMmTfDbb78BAHbs2IGIiAjY29ujWbNm2Lx5c5njXr9+Hc888wx8fHyg1WrRsmVLfPvtt7c1Vl9fXwAoE5SeO3cOjz32GDw8PGBnZ4dOnTph7dq1ZvuY0s+7d+/GpEmT4OXlBUdHRzz88MNISUkpc65//vkHPXv2hLOzM1xcXNC5c2f89NNPZfY7c+YMevfuDQcHBwQEBGDu3Llmz5uu7y+//IJ3330XAQEBcHZ2xmOPPYbMzEwUFBRg4sSJ8Pb2hpOTE8aMGVPm52D58uW477774O3tDa1Wi/DwcCxZsqTMWEw/Lxs3bkSnTp1gb2+PL7/8stzrOWvWLCgUituaRSb5YRBFZIWVK1fikUcegUajwfDhwxEdHY2DBw+a7fPXX3/B3t4ejzzyiNXHDwkJwciRI/HVV18hPj6+2uNMTU0t88jKygJgDOK+/fZb5Ofn4/nnn5deM2PGDJw+fRrLly+Ho6MjAOCDDz7AyJEjERYWhvnz52PixInYsmULevTogYyMDOm1mzZtQo8ePXDmzBm88sormDdvHnr37o1169ZZNW4vLy/pA+3hhx/GDz/8gB9++KHCa/nss89i+vTp6NChAz799FP07NkTs2fPxrBhw8rsGxMTg8ceewz3338/5s2bB3d3d4wePRqnT5+2apzWSk9Px6BBgxAREYG5c+dCq9Vi2LBhWLVqFYYNG4YBAwZgzpw5yM3NxWOPPYbs7GzptUlJSbjnnnuwefNmvPjii1i4cCGaNGmCsWPHYsGCBVU6f2FhofRzcO3aNfz111+YP38+evTogZCQEGm/06dP45577sHZs2cxZcoUzJs3D46OjhgyZAj++OOPMsd96aWXcPz4ccyYMQMvvPAC/vrrrzIF19999x0GDhyItLQ0vPXWW5gzZw7atWuHDRs2lLlG/fv3R9u2bTFv3jw0b94cb775Jv75558y5509ezY2btyIKVOm4JlnnsHq1avx/PPP45lnnsGFCxcwc+ZMPPLII/juu+/w0Ucfmb12yZIlCAoKwtSpUzFv3jwEBgbif//7HxYvXlzmPOfPn8fw4cNx//33Y+HChWjXrp3F6ztt2jRMnz4dX375JV566aVy3weqh0QiqpJDhw6JAMRNmzaJoiiKBoNBbNiwofjKK6+Y7efu7i62a9euzOuzsrLElJQU6ZGTkyM9t3z5chGAePDgQfHixYuiSqUSX375Zen5nj17ii1btqx0jKNGjRIBWHxERUWZ7fvll1+KAMQff/xR3Ldvn6hUKsWJEydKz1++fFlUKpXiBx98YPa6kydPiiqVStpeVFQkhoSEiEFBQWJ6errZvgaDwex76Nmzp8UxBwUFSV+npKSIAMQZM2aU2XfGjBli6V9bx44dEwGIzz77rNl+kydPFgGIW7dulbYFBQWJAMT//vtP2pacnCxqtVrxtddeK3Ou8hw8eFAEIC5fvrzMc9u2bRMBiNu2bZO29ezZUwQg/vTTT9K2c+fOiQBEhUIh7tu3T9q+cePGMsceO3as6OfnJ6amppqda9iwYaKrq6uYl5dX4XhN3/etj27dupU5Zp8+fcTWrVuL+fn50jaDwSB27dpVDAsLk7aZfl779u1r9h6/+uqrolKpFDMyMkRRFMWMjAzR2dlZjIiIEG/evGl2rlt/NgCI33//vbStoKBA9PX1FR999FFpm+n6tmrVStTpdNL24cOHi4IgiA888IDZOSIjI81+tkRRtHi9oqKixMaNG1u8bhs2bCizPwBxwoQJoiiK4muvvSYqFArxu+++K7Mf1X+ciSKqopUrV8LHxwe9e/cGYJzRGTp0KH7++Wfo9Xppv6ysLDg5OZV5/YgRI+Dl5SU93nzzTYvnady4MUaMGIFly5YhISHB6nHa2dlh06ZNZR63pgjHjx+PqKgovPTSSxgxYgRCQ0Px4YcfSs+vXr0aBoMBTzzxhNmMlq+vL8LCwrBt2zYAwNGjRxEbG4uJEyfCzc3N7Bw13Y5g/fr1AIBJkyaZbTcVUf/9999m28PDw82Kwb28vNCsWTNcunSpRsfp5ORkNjPWrFkzuLm5oUWLFmZ3eZr+bhqPKIr4/fff8eCDD0IURbP3ISoqCpmZmThy5Eil54+IiJB+DtatW4cPPvgAp0+fxkMPPYSbN28CANLS0rB161Y88cQTyM7Ols5z48YNREVFITo6usydo+PHjzd7j++9917o9XpcuXIFgHGGMjs7G1OmTClTK3brz4aTk5NZ3ZZGo0GXLl0svjcjR46EWq02+/5EUcQzzzxT5vu+evUqioqKpG2la5oyMzORmpqKnj174tKlS8jMzDR7fUhICKKioixcUeN7Y5oZ/PHHHzFq1CiL+1H9xsJyoirQ6/X4+eef0bt3b8TGxkrbIyIiMG/ePGzZsgX9+vUDADg7OyMnJ6fMMd577z0p1XH//fdXeL5p06bhhx9+wJw5c8zqiqpCqVSa3U1WkW+++QahoaGIjo7Gnj17zD5goqOjIYpiuUXHpg+xixcvAkCt9Pm5cuUKFApFmTskfX194ebmJn2YmzRq1KjMMdzd3ZGenl6j42zYsGGZoMHV1RWBgYFltgGQxpOSkoKMjAwsW7YMy5Yts3js0nVt5fH09DT7mRg4cCCaNWuGxx57DF9//TVeeuklxMTEQBRFvPPOO3jnnXfKPVdAQID09a3X093d3Wz81vxsWLpG7u7uOHHiRJl9bz2v6bpZup4GgwGZmZlo0KABAGD37t2YMWMG9u7di7y8PLP9MzMzpWMBMEt13ur7779HTk4OlixZguHDh1f6/VH9xCCKqAq2bt2KhIQE/Pzzz/j555/LPL9y5UopiGrevDmOHz+OwsJCs/8tt2nTpsrna9y4MZ5++mksW7asRm/p3759u1R4e/LkSbO70AwGAwRBwD///GOxPYKl2baKCIIAURTLbC89i1ddVZ3xKq/Ng6Vx2VJ5561sPAaDAQDw9NNPlzvTYc3PVWl9+vQBAPz333946aWXpHNNnjy53NmXW4NVW15Pa45V3et58eJF9OnTB82bN8f8+fMRGBgIjUaD9evX49NPP5WugUlFd+J169YNx44dw+eff44nnngCHh4e5e5L9ReDKKIqWLlyJby9vS0Wn65evRp//PEHli5dCnt7ewwaNAj79u3DH3/8gSeeeKLa55w2bRp+/PHHMoWxtpKQkICXXnoJ/fr1g0ajkT48g4KCABj7HomiiJCQEDRt2rTc44SGhgIATp06VeEMmLu7u8XUzK2zRdakAIOCgmAwGBAdHY0WLVpI25OSkpCRkSF9L3Ll5eUFZ2dn6PX6Ks8uVpUpxWWaNW3cuDEA4wyjrc5V+mfDUj+1O+2vv/5CQUEB1q5dazabZUpNW6NJkyaYO3cuevXqhf79+2PLli1wdna25XBJBlgTRVSJmzdvYvXq1Rg0aBAee+yxMo8XX3wR2dnZ0m3gL7zwAnx8fPDqq6/iwoULZY5X1f+lh4aG4umnn8aXX36JxMREm35PADBu3DgYDAZ88803WLZsGVQqFcaOHSuN75FHHoFSqcS7775bZsyiKOLGjRsAgA4dOiAkJAQLFiwwu2PPtF/p7+fcuXNmt8AfP34cu3fvNnuNg4MDAJQ5liUDBgwAgDJ3qc2fPx+AMW0lZ0qlEo8++ih+//13nDp1qszzltoJVNVff/0FAGjbti0AwNvbG7169cKXX35psRavOufq168fnJ2dMXv2bOTn55s9V9Ozf5aYZqpKnzszMxPLly+v1vHatGmD9evX4+zZs3jwwQel+jK6e3AmiqgSa9euRXZ2Nh566CGLz99zzz3w8vLCypUrMXToUHh4eOCPP/7Agw8+iLZt22LYsGHo3Lkz1Go1rl69il9//RWA5fqcW7399tv44YcfcP78ebRs2bJK4y0qKsKPP/5o8bmHH34Yjo6OWL58Of7++2989913aNiwIQDgs88+w9NPP40lS5bgf//7H0JDQzFr1iy89dZbuHz5MoYMGQJnZ2fExsbijz/+wPjx4zF58mQoFAosWbIEDz74INq1a4cxY8bAz88P586dw+nTp7Fx40YAwDPPPIP58+cjKioKY8eORXJyMpYuXYqWLVtK7RcAYwolPDwcq1atQtOmTeHh4YFWrVpZrKtp27YtRo0ahWXLliEjIwM9e/bEgQMHsGLFCgwZMkS6CUDO5syZg23btiEiIgLjxo1DeHg40tLScOTIEWzevLlKS7dcv35d+pnQ6XQ4fvw4vvzyS3h6eprdkr948WJ0794drVu3xrhx49C4cWMkJSVh7969uHbtGo4fP27V2F1cXPDpp5/i2WefRefOnfHkk0/C3d0dx48fR15eHlasWGHdxbhNplnXBx98EM899xxycnLw1Vdfwdvbu1o3cQDGf/9//vknBgwYgMceewxr1qwxS+NTPXdnbwYkkp8HH3xQtLOzE3Nzc8vdZ/To0aJarTa7ZTwhIUF8/fXXxfDwcNHe3l7UarVi48aNxZEjR5rdZi+K5i0ObmVqW3C7LQ4AiLGxseLVq1dFV1dX8cEHHyzz+ocfflh0dHQUL126JG37/fffxe7du4uOjo6io6Oj2Lx5c3HChAni+fPnzV67a9cu8f777xednZ1FR0dHsU2bNuJnn31mts+PP/4oNm7cWNRoNGK7du3EjRs3lmlxIIqiuGfPHrFjx46iRqMxa3dwa4sDURTFwsJC8d133xVDQkJEtVotBgYGim+99ZbZbfqiaLxlfeDAgWW+5/JaL5SnOi0OLL135Y0HpW6fN0lKShInTJggBgYGimq1WvT19RX79OkjLlu2rNLx3triQKFQiN7e3uLw4cPFmJiYMvtfvHhRHDlypOjr6yuq1WoxICBAHDRokPjbb79J+5T382rp+xdFUVy7dq3YtWtX0d7eXnRxcRG7dOki/t///V+l1+jWnw3T8X/99Vez/cobj+nnJSUlxWwsbdq0Ee3s7MTg4GDxo48+Er/99lvp30fp62bp/RFFy+/Rn3/+KapUKnHo0KGiXq+3+DqqfwRRrIU5VSIiIiKZY00UERERUTUwiCIiIiKqBgZRRERERNXAIIqIiIioGhhEEREREVUDgygiIiKiamCzzRpkMBgQHx8PZ2fnGl/NnoiIiGxDFEVkZ2fD398fCkX5800MompQfHx8mVXFiYiISB6uXr0qrepgCYOoGmRajPLq1atwcXGp5dEQERFRVWRlZSEwMLDSRaUZRNUgUwrPxcWFQRQREZHMVFaKw8JyIiIiompgEEVERERUDQyiiIiIiKqBNVFERFWg1+tRWFhY28MgIhtQq9VQKpW3fRwGUUREFRBFEYmJicjIyKjtoRCRDbm5ucHX1/e2+jgyiCIiqoApgPL29oaDgwMb5xLJnCiKyMvLQ3JyMgDAz8+v2sdiEEVEVA69Xi8FUA0aNKjt4RCRjdjb2wMAkpOT4e3tXe3UHgvLiYjKYaqBcnBwqOWREJGtmf5d306tI4MoIqJKMIVHVP/Y4t81gygiIiKiamAQRUREdUqvXr0wceLEWh3D5cuXIQgCjh07VqvjuFvNnDkT7dq1q+1hVIpBFBFRPTR69GgIglDm0b9//9oemmT79u0QBKFM+4jVq1fj/fffr7Hzzpw50+K1Kf0IDAxEQkICWrVqVWPjqAtufQ++++47uLm53dExCIKANWvWmG2bPHkytmzZckfHUR28O0+GEjPzUVCkR4CbPVRKxsFEZFn//v2xfPlys21arbaWRlN1Hh4eNXr8yZMn4/nnn5e+7ty5M8aPH49x48ZJ25RKJXx9fWt0HHeSTqeDRqO5Y+fT6/UQBAEKRfU+o5ycnODk5GTjUdkeP4FlqNtHW9Hz4+1IzdHV9lCIqA7TarXw9fU1e7i7uwMwzkBoNBrs3LlT2n/u3Lnw9vZGUlISAODq1at44okn4ObmBg8PDwwePBiXL182O8e3336Lli1bQqvVws/PDy+++CIAy+mwjIwMCIKA7du34/Lly+jduzcAwN3dHYIgYPTo0QDKpvPS09MxcuRIuLu7w8HBAQ888ACio6Ol502zJxs3bkSLFi3g5OSE/v37IyEhweJ1cXJyMrsmSqUSzs7OZttuHb9pxmbjxo1o37497O3tcd999yE5ORn//PMPWrRoARcXFzz55JPIy8uTzmUwGDB79myEhITA3t4ebdu2xW+//Vbh+xYcHIz3338fw4cPh6OjIwICArB48WKzfTIyMvDss8/Cy8sLLi4uuO+++3D8+HHpeVM67Ouvv0ZISAjs7OwqPKfpexwzZgwyMzOlGbmZM2cCAAoKCjB58mQEBATA0dERERER2L59e5n3YO3atQgPD4dWq0VcXBwOHjyI+++/H56ennB1dUXPnj1x5MgRs+8VAB5++GEIgiB9fWs6z2Aw4L333kPDhg2h1WrRrl07bNiwQXre9H6tXr0avXv3hoODA9q2bYu9e/dW+n3fDgZRMqQpnn3SFRlqeSREdx9RFJGnK6qVhyiKNvs+TIHKiBEjkJmZiaNHj+Kdd97B119/DR8fHxQWFiIqKgrOzs7YuXMndu/eLQUnOp3xP3BLlizBhAkTMH78eJw8eRJr165FkyZNqnT+wMBA/P777wCA8+fPIyEhAQsXLrS47+jRo3Ho0CGsXbsWe/fuhSiKGDBggNmt6Xl5efjkk0/www8/4L///kNcXBwmT558m1eprJkzZ+Lzzz/Hnj17pCBzwYIF+Omnn/D333/j33//xWeffSbtP3v2bHz//fdYunQpTp8+jVdffRVPP/00duzYUeF5Pv74Y7Rt2xZHjx7FlClT8Morr2DTpk3S848//rgUwB0+fBgdOnRAnz59kJaWJu0TExOD33//HatXr65SbVfXrl2xYMECuLi4ICEhAQkJCdI1fPHFF7F37178/PPPOHHiBB5//HH079/fLJjNy8vDRx99hK+//hqnT5+Gt7c3srOzMWrUKOzatQv79u1DWFgYBgwYgOzsbADAwYMHAQDLly9HQkKC9PWtFi5ciHnz5uGTTz7BiRMnEBUVhYceesjs/ADw9ttvY/LkyTh27BiaNm2K4cOHo6ioqNLvvbqYzpMhrVqBm4V66PT62h4K0V3nZqEe4dM31sq5z7wXBQdN1X9tr1u3rkxKZOrUqZg6dSoAYNasWdi0aRPGjx+PU6dOYdSoUXjooYcAAKtWrYLBYMDXX38t3Qq+fPlyuLm5Yfv27ejXrx9mzZqF1157Da+88op0/M6dO1dpbEqlUkrbeXt7l1uHEx0djbVr12L37t3o2rUrAGDlypUIDAzEmjVr8PjjjwMw9vpZunQpQkNDARg/9N97770qjcUas2bNQrdu3QAAY8eOxVtvvYWLFy+icePGAIDHHnsM27Ztw5tvvomCggJ8+OGH2Lx5MyIjIwEAjRs3xq5du/Dll1+iZ8+e5Z6nW7dumDJlCgCgadOm2L17Nz799FPcf//92LVrFw4cOIDk5GQpPfvJJ59gzZo1+O233zB+/HgAxhTe999/Dy8vryp9bxqNBq6urhAEwSyVGRcXh+XLlyMuLg7+/v4AjCnRDRs2YPny5fjwww8BGN+DL774Am3btpVee99995mdY9myZXBzc8OOHTswaNAgaWymJVjK88knn+DNN9/EsGHDAAAfffQRtm3bhgULFpjN0k2ePBkDBw4EALz77rto2bIlYmJi0Lx58ypdA2sxiJIh00xUAWeiiKgCvXv3xpIlS8y2la430mg0WLlyJdq0aYOgoCB8+umn0nPHjx9HTEwMnJ2dzV6fn5+PixcvIjk5GfHx8ejTp0+Nfg9nz56FSqVCRESEtK1BgwZo1qwZzp49K21zcHCQAijAuJSHaVkPW2rTpo30dx8fHzg4OEgBlGnbgQMHABhngvLy8nD//febHUOn06F9+/YVnscUdJX+esGCBQCM701OTk6ZLvo3b97ExYsXpa+DgoKqHEBV5OTJk9Dr9WjatKnZ9oKCArMxaDQas+sDAElJSZg2bRq2b9+O5ORk6PV65OXlIS4ursrnz8rKQnx8vBS8mnTr1s0shQmYvz+m5VySk5MZRFEJjYrpPKLaYq9W4sx7UbV2bms4OjpWml7bs2cPACAtLQ1paWlwdHQEAOTk5KBjx45YuXJlmdd4eXlVWjBser50CvJ2OkNXRq1Wm30tCIJN05+WziMIgsXzGgzG3805OTkAgL///hsBAQFm+91OgX9OTg78/PzMapJMSs/omd7L25WTkwOlUonDhw+XWR6l9Eynvb19mQaWo0aNwo0bN7Bw4UIEBQVBq9UiMjJSSgnb2q3vDwDp/agJDKJkiEEUUe0RBMGqlFpddvHiRbz66qv46quvsGrVKowaNQqbN2+GQqFAhw4dsGrVKnh7e8PFxcXi64ODg7FlyxapQLw00wxIQkKCNOtya12O6W4xfQWlCS1atEBRURH2798vpfNu3LiB8+fPIzw83Orv+U4qXWBdUerOkn379pX5ukWLFgCADh06IDExESqVSirEthWNRlPm/Wjfvj30ej2Sk5Nx7733WnW83bt344svvsCAAQMAGG9WSE1NNdtHrVZX+DPg4uICf39/7N692+w67t69G126dLFqPLbGwnIZkgrL9QyiiKh8BQUFSExMNHuYPsD0ej2efvppREVFYcyYMVi+fDlOnDiBefPmAQCeeuopeHp6YvDgwdi5cydiY2Oxfft2vPzyy7h27RoAY5H1vHnzsGjRIkRHR+PIkSNSUbW9vT3uuecezJkzB2fPnsWOHTswbdo0s/EFBQVBEASsW7cOKSkp0sxNaWFhYRg8eDDGjRuHXbt24fjx43j66acREBCAwYMH1+Tlu23Ozs6YPHkyXn31VaxYsQIXL16UrtGKFSsqfO3u3bsxd+5cXLhwAYsXL8avv/4q1Z717dsXkZGRGDJkCP79919cvnwZe/bswdtvv41Dhw7d1piDg4ORk5ODLVu2IDU1FXl5eWjatCmeeuopjBw5EqtXr0ZsbCwOHDiA2bNn4++//67weGFhYfjhhx9w9uxZ7N+/H0899ZS0+G/pc27ZsgWJiYlIT0+3eJzXX38dH330EVatWoXz589jypQpOHbsmFk9Xm1gECVD2uKZqIJCBlFEVL4NGzbAz8/P7NG9e3cAwAcffIArV67gyy+/BGCsH1m2bBmmTZuG48ePw8HBAf/99x8aNWqERx55BC1atMDYsWORn58vzUyNGjUKCxYswBdffIGWLVti0KBBZndLffvttygqKkLHjh0xceJEzJo1y2x8AQEBePfddzFlyhT4+PhI7RFutXz5cnTs2BGDBg1CZGQkRFHE+vXry6TS6qL3338f77zzDmbPno0WLVqgf//++PvvvxESElLh61577TUcOnQI7du3x6xZszB//nxERRnTyIIgYP369ejRowfGjBmDpk2bYtiwYbhy5Qp8fHxua7xdu3bF888/j6FDh8LLywtz584FYHwPRo4ciddeew3NmjXDkCFDcPDgQTRq1KjC433zzTdIT09Hhw4dMGLECLz88svw9vY222fevHnYtGkTAgMDy60Ve/nllzFp0iS89tpraN26NTZs2IC1a9ciLCzstr7f2yWINZE0JgDGYjhXV1dkZmaWOx1eHY8v3YODl9PxxVMdMKC1n82OS0Tm8vPzERsbW+U+O0S2EBwcjIkTJ9b60jf1XUX/vqv6+c2ZKBnSqoyFfayJIiIiqj0MomSIheVERES1r37cYnKXkfpEsbCciKjeuXVpHaq7OBMlQ5yJIiIiqn0MomSIQRTRncX7b4jqH1v8u2YQJUOmIKqgiGvnEdUk0y30eXl5tTwSIrI107/r22mVwZooGdJyJorojlAqlXBzc5PWYHNwcCizrAURyYsoisjLy0NycjLc3NzKLGVjDQZRMsR0HtGdY1pZviYWsyWi2uPm5ib9+64uBlEypOWyL0R3jCAI8PPzg7e3d40uoEtEd45arb6tGSgTBlEyxJkoojtPqVTa5JcuEdUfLCyXIQZRREREtY9BlAxJzTYZRBEREdUaBlEypCleO49BFBERUe1hECVDUosDFpYTERHVGgZRMlRSE8Vmm0RERLWFQZQMsbCciIio9jGIkiEN03lERES1jkGUDEnNNjkTRUREVGsYRMlQyQLEDKKIiIhqC4MoGWJNFBERUe1jECVD2uI+UQyiiIiIag+DKBniTBQREVHtYxAlQ1JNFO/Ok7Uz8Vm4nJpb28MgIqJqYhAlQ5pSd+eJoljLo6HqyCkowsNf7MawZftqeyhERFRNDKJkyDQTBQCFegZRcpSeq0NBkQGJWfkMhImIZIpBlAxpSwVRBVz6RZaKDCWBk97AIIqISI4YRMmQKZ0HsLhcrgpL1bMVMYgiIpIlBlEypFAIUCsFAFz6Ra5KB78MooiI5IlBlExpuPSLrJnNRDEQJiKSJQZRMsVeUfJWevaJNwcQEckTgyiZ4vp58lZols7je0hEJEcMomRKmoliKkiWdGbpPM5EERHJEYMomTLVRBUUMoiSo9IpvEIGwkREssQgSqakRYj5ASxLpYvJ2SeKiEieGETJFAvL5a108MvCciIieWIQJVMMouStdODEwnIiInliECVTWqmwnMu+yFEhZ6KIiGSPQZRMsdmmvBWx2SYRkewxiJIp9omSN51ZOo8zUUREcsQgSqZYEyVvXICYiEj+GETJlJYzUbJm1rGc6TwiIlliECVTnImSt0KunUdEJHsMomRKo2SzTTkzT+fxPSQikiMGUTLFmSh5M0/ncSaKiEiO6kQQtXjxYgQHB8POzg4RERE4cOBAhfv/+uuvaN68Oezs7NC6dWusX7/e7HlRFDF9+nT4+fnB3t4effv2RXR0tPT85cuXMXbsWISEhMDe3h6hoaGYMWMGdDqd2T6CIJR57Nu3z7bffDUxiJI38z5RfA+JiOSo1oOoVatWYdKkSZgxYwaOHDmCtm3bIioqCsnJyRb337NnD4YPH46xY8fi6NGjGDJkCIYMGYJTp05J+8ydOxeLFi3C0qVLsX//fjg6OiIqKgr5+fkAgHPnzsFgMODLL7/E6dOn8emnn2Lp0qWYOnVqmfNt3rwZCQkJ0qNjx441cyGsVFJYzmabclS6xQHXziMikqdaD6Lmz5+PcePGYcyYMQgPD8fSpUvh4OCAb7/91uL+CxcuRP/+/fH666+jRYsWeP/999GhQwd8/vnnAIyzUAsWLMC0adMwePBgtGnTBt9//z3i4+OxZs0aAED//v2xfPly9OvXD40bN8ZDDz2EyZMnY/Xq1WXO16BBA/j6+koPtVpdY9fCGmy2KW+l78grZBBFRCRLtRpE6XQ6HD58GH379pW2KRQK9O3bF3v37rX4mr1795rtDwBRUVHS/rGxsUhMTDTbx9XVFREREeUeEwAyMzPh4eFRZvtDDz0Eb29vdO/eHWvXrq3w+ykoKEBWVpbZo6Zo1aZlXxhEyVEhO5YTEclerQZRqamp0Ov18PHxMdvu4+ODxMREi69JTEyscH/Tn9YcMyYmBp999hmee+45aZuTkxPmzZuHX3/9FX///Te6d++OIUOGVBhIzZ49G66urtIjMDCw3H1vF2ei5M1sAWIWlhMRyZKqtgdQ265fv47+/fvj8ccfx7hx46Ttnp6emDRpkvR1586dER8fj48//hgPPfSQxWO99dZbZq/JysqqsUCKy77Im84sncf3kIhIjmp1JsrT0xNKpRJJSUlm25OSkuDr62vxNb6+vhXub/qzKseMj49H79690bVrVyxbtqzS8UZERCAmJqbc57VaLVxcXMweNYV358mb+QLEnIkiIpKjWg2iNBoNOnbsiC1btkjbDAYDtmzZgsjISIuviYyMNNsfADZt2iTtHxISAl9fX7N9srKysH//frNjXr9+Hb169ULHjh2xfPlyKBSVX4pjx47Bz8/Pqu+xpkjpPNbTyFIhFyAmIpK9Wk/nTZo0CaNGjUKnTp3QpUsXLFiwALm5uRgzZgwAYOTIkQgICMDs2bMBAK+88gp69uyJefPmYeDAgfj5559x6NAhaSZJEARMnDgRs2bNQlhYGEJCQvDOO+/A398fQ4YMAVASQAUFBeGTTz5BSkqKNB7TbNWKFSug0WjQvn17AMDq1avx7bff4uuvv75Tl6ZCUjqvkEGUHOlYWE5EJHu1HkQNHToUKSkpmD59OhITE9GuXTts2LBBKgyPi4szmyXq2rUrfvrpJ0ybNg1Tp05FWFgY1qxZg1atWkn7vPHGG8jNzcX48eORkZGB7t27Y8OGDbCzswNgnLmKiYlBTEwMGjZsaDYeUSyZFXj//fdx5coVqFQqNG/eHKtWrcJjjz1Wk5ejyqR0Hj+AZcl82RfORBERyZEglo4ayKaysrLg6uqKzMxMm9dHHb6SjkeX7EEjDwf890Zvmx6bat6Dn+3CyeuZAIAx3YIx48GWtTwiIiIyqernd60326Tq0bKwXNYKWVhORCR7DKJkiuk8eTOriWKLAyIiWWIQJVNstilvnIkiIpI/BlEypeECxLJWxBYHRESyxyBKpkxBVKFehIEfwrJTeiaqkClZIiJZYhAlU6bCcoB1UXJUOg3LdB4RkTwxiJIpDYMoWTPvWM73j4hIjhhEyZSpsBxgcbkcmafzOBNFRCRHDKJkShAE3qEnU6IomhWT61nTRkQkSwyiZEzDhpuydOvMEwvLiYjkiUGUjJW0OeCHsJzcGjSxxQERkTwxiJIxpvPkqUwQxZkoIiJZYhAlY1q1aekXNtyUk7LpPM5EERHJEYMoGTPNRDGdJy9l03l8/4iI5IhBlIyxsFyeWBNFRFQ/MIiSMQZR8lS2JopBFBGRHDGIkjGpsJyFybJyaw0UC8uJiOSJQZSMSS0OCvkhLCe3zkQVMp1HRCRLDKJkzLQIMWei5IUtDoiI6gcGUTKmVSkBsCZKbnRFxpknpUIAwMJyIiK5YhAlYywslydTSwMHtTEIZmE5EZE8MYiSMRaWy5MpnWevKQ6i2CeKiEiWGETJGNfOkydTOs+hOIgq1IsQRc5GERHJDYMoGWM6T55MM1F2xek8ANCzLoqISHYYRMlYyUwU186TE1P6zpTOM25jEEVEJDcMomRMy5koWSq8JZ0HMIgiIpIjBlEyxnSePJluBLBXq6Rt7BVFRCQ/DKJkjHfnyZOpJkqrVpTaxpkoIiK5YRAlY0znyZMURCkVUCtNDTf5HhIRyQ2DKBljOk+eTLNOaqUCKoXxPWTDTSIi+WEQJWPsEyVPppkolVKAqnjpl1vX0yMiorqPQZSMaZRcO0+OTAGTWqmAqjidxz5RRETywyBKxkw1UQWcxZAVUzpPo1JAVXxzAAvLiYjkh0GUjLEmSp5KZqIEqBUsLCcikisGUTJWEkSxY7mcSDVRCs5EERHJGYMoGZOCKKbzZMXUsdyYziueieJ7SEQkOwyiZExqtsl0nqyUTueppHQeZ6KIiOSGQZSMadniQJYKDRb6RDGIIiKSHQZRMsbCcnkqLDL1iSrVsZzpPCIi2WEQJWNaFftEyZEpnadRCiwsJyKSMQZRMmaaiSoyiDAwHSQbutLNNtnigIhIthhEyZgpiAJ4h56cFJVaO0+t5Np5RERyxSBKxkx35wEsLpeT0su+KLl2HhGRbKms2dlgMGDHjh3YuXMnrly5gry8PHh5eaF9+/bo27cvAgMDa2qcZIGpKBlgXZScmHUs59p5RESyVaWZqJs3b2LWrFkIDAzEgAED8M8//yAjIwNKpRIxMTGYMWMGQkJCMGDAAOzbt6+mx0zFBEGQUnoF7FouGzp92RYHhQyiiIhkp0ozUU2bNkVkZCS++uor3H///VCr1WX2uXLlCn766ScMGzYMb7/9NsaNG2fzwVJZWqUCuiIDZ6JkpHQ6jx3LiYjkq0pB1L///osWLVpUuE9QUBDeeustTJ48GXFxcTYZHFVOq1Ygu4CF5XJiCpg0KoGF5UREMlaldF5lAVRparUaoaGh1R4QWYdLv8iPqSeUSlGqsJwtDoiIZMfqu/M2bNiAXbt2SV8vXrwY7dq1w5NPPon09HSbDo4qx67l8lO6T1RJx3LORBERyY3VQdTrr7+OrKwsAMDJkyfx2muvYcCAAYiNjcWkSZNsPkCqGIMo+Skslc7j2nlERPJlVYsDAIiNjUV4eDgA4Pfff8egQYPw4Ycf4siRIxgwYIDNB0gVk+7OY02UbJRutsnCciIi+bJ6Jkqj0SAvLw8AsHnzZvTr1w8A4OHhIc1Q0Z1jqokqKOSHsFyY0nmq0h3LORNFRCQ7Vs9Ede/eHZMmTUK3bt1w4MABrFq1CgBw4cIFNGzY0OYDpIpJixBzJkMWRFE0a7apYsdyIiLZsnom6vPPP4dKpcJvv/2GJUuWICAgAADwzz//oH///jYfIFWMNVHyojeIEIsnnTSlFyBmYTkRkexYPRPVqFEjrFu3rsz2Tz/91CYDIuswiJKX0mk7Y02UKZ3H94+ISG6qNBOVm5tr1UGt3Z+qrySI4rIvclA67apSCqUKyzkTRUQkN1UKopo0aYI5c+YgISGh3H1EUcSmTZvwwAMPYNGiRTYbIFVMa2q2yZoaWSgsNWOoViigZosDIiLZqlI6b/v27Zg6dSpmzpyJtm3bolOnTvD394ednR3S09Nx5swZ7N27FyqVCm+99Raee+65mh43FZNaHPDuPFko6VYuQKEomYliYTkRkfxUKYhq1qwZfv/9d8TFxeHXX3/Fzp07sWfPHty8eROenp5o3749vvrqKzzwwANQKpU1PWYqRUrn8UNYFkovPgygpCaK6TwiItmxqrC8UaNGeO211/Daa6/V1HjISloWlstKodQjyjgDJd2dx8JyIiLZsbrFAdUtUjqPQZQsmNJ5piapJX2iOBNFRCQ3DKJkTqNks005uTWdZ/pTz8JyIiLZYRAlc+wTJS9SEKUqTuexsJyISLYYRMkcgyh5KSy1+DAAqNjigIhIthhEyVxJTRSbbcqBNBOlMKXzTM02GQQTEclNtYKonTt34umnn0ZkZCSuX78OAPjhhx+wa9cumw6OKic12+RMlCzobknnKVlYTkQkW1YHUb///juioqJgb2+Po0ePoqCgAACQmZmJDz/80OYDpIpp1ewTJSemjuUsLCcikj+rg6hZs2Zh6dKl+Oqrr6BWq6Xt3bp1w5EjR2w6OKqchjNRsmKqfVLf2uKAfaKIiGTH6iDq/Pnz6NGjR5ntrq6uyMjIqNYgFi9ejODgYNjZ2SEiIgIHDhyocP9ff/0VzZs3h52dHVq3bo3169ebPS+KIqZPnw4/Pz/Y29ujb9++iI6Olp6/fPkyxo4di5CQENjb2yM0NBQzZsyATqczO86JEydw7733ws7ODoGBgZg7d261vr+axMJyeSlpcWC6O48dy4mI5MrqIMrX1xcxMTFltu/atQuNGze2egCrVq3CpEmTMGPGDBw5cgRt27ZFVFQUkpOTLe6/Z88eDB8+HGPHjsXRo0cxZMgQDBkyBKdOnZL2mTt3LhYtWoSlS5di//79cHR0RFRUFPLz8wEA586dg8FgwJdffonTp0/j008/xdKlSzF16lTpGFlZWejXrx+CgoJw+PBhfPzxx5g5cyaWLVtm9fdYk9hsU150ZdJ5LCwnIpIt0UoffvihGB4eLu7bt090dnYWd+7cKf7444+il5eXuGjRImsPJ3bp0kWcMGGC9LVerxf9/f3F2bNnW9z/iSeeEAcOHGi2LSIiQnzuuedEURRFg8Eg+vr6ih9//LH0fEZGhqjVasX/+7//K3ccc+fOFUNCQqSvv/jiC9Hd3V0sKCiQtr355ptis2bNqvy9ZWZmigDEzMzMKr/GWvsupopBb64Te3+yrcbOQbazct8VMejNdeKzKw6KoiiKp69nikFvrhM7zdpUyyMjIiKTqn5+Wz0TNWXKFDz55JPo06cPcnJy0KNHDzz77LN47rnn8NJLL1l1LJ1Oh8OHD6Nv377SNoVCgb59+2Lv3r0WX7N3716z/QEgKipK2j82NhaJiYlm+7i6uiIiIqLcYwLGwngPDw+z8/To0QMajcbsPOfPn0d6errFYxQUFCArK8vsUdOkmahCzmTIgWmNPGnZF85EERHJltVBlCAIePvtt5GWloZTp05h3759SElJwfvvv2/1yVNTU6HX6+Hj42O23cfHB4mJiRZfk5iYWOH+pj+tOWZMTAw+++wzPPfcc5Wep/Q5bjV79my4urpKj8DAQIv72ZJUE8UPYVkwpfPKLkDMmigiIrmpdrNNjUaD8PBwdOnSBU5OTrYc0x11/fp19O/fH48//jjGjRt3W8d66623kJmZKT2uXr1qo1GWT6sqXjuPNVGycGvHcjULy4mIZEtl7Qvy8/Px2WefYdu2bUhOTobhlluzrWlz4OnpCaVSiaSkJLPtSUlJ8PX1tfgaX1/fCvc3/ZmUlAQ/Pz+zfdq1a2f2uvj4ePTu3Rtdu3YtUzBe3nlKn+NWWq0WWq3W4nM1Rcu782Tl1gWIpXQeWxwQEcmO1TNRY8eOxdy5cxEUFIRBgwZh8ODBZg9raDQadOzYEVu2bJG2GQwGbNmyBZGRkRZfExkZabY/AGzatEnaPyQkBL6+vmb7ZGVlYf/+/WbHvH79Onr16oWOHTti+fLlUCjML0VkZCT+++8/FBYWmp2nWbNmcHd3t+r7rElM58mLqfZJI6XzjO9foV6EKHI2iohITqyeiVq3bh3Wr1+Pbt262WQAkyZNwqhRo9CpUyd06dIFCxYsQG5uLsaMGQMAGDlyJAICAjB79mwAwCuvvIKePXti3rx5GDhwIH7++WccOnRImkkSBAETJ07ErFmzEBYWhpCQELzzzjvw9/fHkCFDAJQEUEFBQfjkk0+QkpIijcc0y/Tkk0/i3XffxdixY/Hmm2/i1KlTWLhwIT799FObfN+2oinV8VpvEKVlRKhu0hWn7VS3tDgAjO+hSsn3j4hILqwOogICAuDs7GyzAQwdOhQpKSmYPn06EhMT0a5dO2zYsEEq4o6LizObJeratSt++uknTJs2DVOnTkVYWBjWrFmDVq1aSfu88cYbyM3Nxfjx45GRkYHu3btjw4YNsLOzA2CcUYqJiUFMTAwaNmxoNh7TbICrqyv+/fdfTJgwAR07doSnpyemT5+O8ePH2+x7twXTTBRgTOnZa5S1OBqqzK3pvNJBb5FBhIpvHxGRbAiilTmEf/75R2pkGRQUVFPjqheysrLg6uqKzMxMuLi41Mg5CvUGhL39DwDg2PT74eagqeQVVJum/3kK3++9gpfva4JJ/Zohv1CP5u9sAACcejcKTlqr/19DREQ2VtXPb6t/Y3fq1An5+flo3LgxHBwczNbPA4C0tDTrR0vVplIIUAiAQWRxuRzceneeqvRMFOvaiIhkxeogavjw4bh+/To+/PBD+Pj4QBBYw1GbBEGARqVAfqGBS7/IgCmdp7KQzitkmwMiIlmxOojas2cP9u7di7Zt29bEeKgaNEpjEMU79Oq+WxcgFgQBaqWAQr3INgdERDJjdYuD5s2b4+bNmzUxFqomDRtuyoYpiCp9Q4BpNooNN4mI5MXqIGrOnDl47bXXsH37dty4ceOOrxVHZbHhpnzoisxrogBALfWK4vtHRCQnVqfz+vfvDwDo06eP2XZRFCEIAvR6vW1GRlUmLULMIKrOM6XsSgdRpt5Qeq6fR0QkK1YHUdu2bauJcdBtMDXc5ExU3XdrTRRQUmTOwnIiInmxOojq2bNnTYyDboNWbVr6hbOAdV2hxXQe188jIpKjKgVRJ06cQKtWraBQKHDixIkK923Tpo1NBkZVx5ko+dDpLaXzOBNFRCRHVQqi2rVrh8TERHh7e6Ndu3YQBMHiYqmsiaodrImSj5KaqFLpPOnuPL5/RERyUqUgKjY2Fl5eXtLfqW7R8O482bCUzjMVlhexsJyISFaqFEQFBQVBqVQiISGB6+XVQVI6jzMZdd6tCxADgKq4xQGDKCIiealynygr1ymmO0hK5xUyiKrrdBbuzjP9nek8IiJ5sbrZJtU9UjqPH8J1XpHeUjqPheVERHJkVYuDr7/+Gk5OThXu8/LLL9/WgMh6Wi77IhuW03lscUBEJEdWBVFLly6FUqks93lBEBhE1QIu+yIfltJ5UmE5Z6KIiGTFqiDq0KFD8Pb2rqmxUDUxnScfFRWWc+08IiJ5qXJNlCAIle9EtYLNNuXDNNtkCnyBklkprp1HRCQvvDuvHmCzTXkwGESpjYGpDsr49+KZKAZRRESyUuUgasaMGZUWlVPtKAmi2C2+LissVTiuVllotsl0HhGRrFS5JmrGjBk1OQ66DabC8uz8oloeCVWkdAsDTekFiIv/zsJyIiJ5YZ+oeqB1gCsAYOu5ZJxNyKrl0VB5Ss80lS4sVxan9grZ4oCISFYYRNUDnYI9MLC1H/QGEe+sOQUDa2vqJNPdkwqhJHACSncs5/tGRCQnDKLqiWmDWsBBo8ShK+n4/ci12h4OWWBK56mU5v/suHYeEZE8MYiqJ/xc7fFKnzAAwJx/ziEzr7CWR0S3Kiy+e1JzaxDFwnIiIlmyOohKSkrCiBEj4O/vD5VKBaVSafag2vNM9xCEeTvhRq4On/x7vraHQ7cotNCt3Pg1Z6KIiOTIqo7lADB69GjExcXhnXfegZ+fH5tw1iFqpQLvDW6F4V/tw4/7r+CJToFo3dC1todFxQotLD4MlPSMYsdyIiJ5sTqI2rVrF3bu3Il27drVwHDodkWGNsDgdv7481g8pv15Cn+80BUKBQPdusDSki9AqQWIWVhORCQrVqfzAgMD2b28jnt7QAs4apQ4fjUDx65l1PZwqFh56TwV03lERLJkdRC1YMECTJkyBZcvX66B4ZAteLvYoW2gGwAgNiW3dgdDEl15M1EsLCcikiWr03lDhw5FXl4eQkND4eDgALVabfZ8WlqazQZH1RfUwAF7Lt7AlbS82h4KFSsqpyZKzRYHRESyZHUQtWDBghoYBtlaoIcDAOAqg6g6o/x0HgvLiYjkyOogatSoUTUxDrKxIA9HAMCVG0zn1RXlFpZz7TwiIlmyOogCAL1ejzVr1uDs2bMAgJYtW+Khhx5in6g6pFHxTFRc2s1aHgmZ6CppcVDEtfOIiGTF6iAqJiYGAwYMwPXr19GsWTMAwOzZsxEYGIi///4boaGhNh8kWa9RA2MQlZpTgNyCIjhqqxUvkw2ZCsfVqvKCKM5EERHJidV357388ssIDQ3F1atXceTIERw5cgRxcXEICQnByy+/XBNjpGpwtVfD1d5Y9H81nXVRdYGUzlOU07Gc6TwiIlmxenpix44d2LdvHzw8PKRtDRo0wJw5c9CtWzebDo5uT1ADB5y4lokrN/LQ3Neltodz1ys3ncfCciIiWbJ6Jkqr1SI7O7vM9pycHGg0GpsMimyDd+jVLaYFiMum89jigIhIjqwOogYNGoTx48dj//79EEURoihi3759eP755/HQQw/VxBipmoKKg6grNxhE1QWmwvEyLQ4UbLZJRCRHVgdRixYtQmhoKCIjI2FnZwc7Ozt069YNTZo0wcKFC2tijFRNJXfoMYiqC6QFiBXlpfM4E0VEJCdW10S5ubnhzz//RHR0NM6dOwcAaNGiBZo0aWLzwdHtMd2hxyCqbtBJ6TzLheV6pvOIiGSl2ve9h4WFISwszJZjIRszzURdS8+D3iBCectdYXRnldtss/h9KWSfKCIiWalSEDVp0iS8//77cHR0xKRJkyrcd/78+TYZGN0+P1d7qJUCCvUiEjJvoqG7Q20P6a5mCqI07FhORFQvVCmIOnr0KAoLC6W/kzwoFQIaujsgNjUXcWl5DKJqWWF5CxArWVhORCRHVQqitm3bZvHvVPc18igOom7koSubydcq00yU6pa785RSOo8zUUREcmL13XnPPPOMxT5Rubm5eOaZZ2wyKLId3qFXd5RXE1XSsZwzUUREcmJ1ELVixQrcvFl2UdubN2/i+++/t8mgyHaCiu/Qu8IgqtaZ0nllaqK4dh4RkSxV+e68rKwsqblmdnY27OzspOf0ej3Wr18Pb2/vGhkkVR+7ltcdJTNRXDuPiKg+qHIQ5ebmBkEQIAgCmjZtWuZ5QRDw7rvv2nRwdPukmSh2La91JTVRlpttFrHFARGRrFQ5iNq2bRtEUcR9992H33//3WwBYo1Gg6CgIPj7+9fIIKn6AovvyMu8WYjMvEK4OqhreUR3r/LTeQrpeVEUIQjs50VEJAdVDqJ69uwJAIiNjUWjRo34i14mHLUqeDppkZpTgLi0PLR2cK3tId21pHSeyvLaeYCxa/mtd+8REVHdZHXH8itXruDKlSvlPt+jR4/bGhDZXiMPe6TmFOBKWi5aN2QQVVvK7VheKmgqMohQKe/osIiIqJqsDqJ69epVZlvpWSm9Xn9bAyLbC2rgiCNxGWxzUMtM6TyVwnKLA4B36BERyYnVLQ7S09PNHsnJydiwYQM6d+6Mf//9tybGSLfJdIdeHIvLa5W07EsF6Tz2iiIikg+rZ6JcXcumg+6//35oNBpMmjQJhw8ftsnAyHaC2HCzTtAVWU7nlV4YupBtDoiIZMPqmajy+Pj44Pz587Y6HNlQI7Y5qBNMqbpbgyhBEErWz2ObAyIi2bB6JurEiRNmX4uiiISEBMyZMwft2rWz1bjIhkwzUQmZN6ErMkCjshw7i6KIH/ZdQRMvJ3Rt4nknh3hXKK/ZJmCcjSrUi2y4SUQkI1YHUe3atYMgCBBF81/299xzD7799lubDYxsx8tZCzu1AvmFBlzPuIkQT0eL+x28nI7pf56Gh6MGh97uC4WCt9rbUmE56TwAUCsUyIdBCrSIiKjuszqIio2NNftaoVDAy8vLbBkYqlsEQUAjDwdcSMpBXFpeuUHU3os3AABpuTpcSs1BE2/nOznMek+nt5zOA0raHOh5dx4RkWxYHUQFBQXVxDiohklB1I1cAF4W99l36Yb090OX0xlE2Zip3slyEFXStZyIiOTB6sLyl19+GYsWLSqz/fPPP8fEiRNtMSaqAY08jLNP5d2hV1Ckx5G4dOnrg5fTLe5H1VeSziubJlUrWFhORCQ3VgdRv//+O7p161Zme9euXfHbb7/ZZFBke4087AGUf4feiWuZKCgq+QA/fCXtjozrblJYYTqPM1FERHJjdRB148YNi72iXFxckJqaapNBke2ZUnNHr2ZYrLvZX5zK697EE4IAXL6Rh5Tsgjs6xvpMFEXoyln2BShpuMlmm0RE8mF1ENWkSRNs2LChzPZ//vkHjRs3tsmgyPa6hHjA2U6FlOwCHLpcdpZpf6xx2/3hPmhaHHAdvsKUnq2UXs5FU0FhOZd9ISKSD6sLyydNmoQXX3wRKSkpuO+++wAAW7Zswbx587BgwQJbj49sRKNSIKqlL347fA1/n0xAROMG0nOFegMOFddA3dO4AS4kZeN8UjYOXU5D/1a+tTXkeqV0/ye1qmxNlGk9PQZRRETyYfVM1DPPPIN58+bhm2++Qe/evdG7d2/8+OOPWLJkCcaNG1cTYyQbGdjGDwDwz6lEs5TeiWuZuFmoh7uDGmHeTugU7A4AOMSZKJvRlUrT3boAMVBSbM50HhGRfFg9EwUAL7zwAl544QWkpKTA3t4eTk5Oth4X1YBuoZ5wKU7pHbychnuKZ6P2xxrrobqEeEChENApyAMAcDo+E/mFetiplbU25vqidBNNS3fnsbCciEh+qrV2XlFRETZv3ozVq1dLncvj4+ORk5Nj08GRbZlSegDw94kEafv+S8Z6qIgQY1DV0N0e3s5aFOpFHL+accfHWR+VXvJFECyl89jigIhIbqwOoq5cuYLWrVtj8ODBmDBhAlJSUgAAH330ESZPnmz1ABYvXozg4GDY2dkhIiICBw4cqHD/X3/9Fc2bN4ednR1at26N9evXmz0viiKmT58OPz8/2Nvbo2/fvoiOjjbb54MPPkDXrl3h4OAANzc3i+cRBKHM4+eff7b6+6trbk3pFekNUqF5RGPjDJQgCEzp2VhRBe0NgFKF5ZyJIiKSDauDqFdeeQWdOnVCeno67O3tpe0PP/wwtmzZYtWxVq1ahUmTJmHGjBk4cuQI2rZti6ioKCQnJ1vcf8+ePRg+fDjGjh2Lo0ePYsiQIRgyZAhOnTol7TN37lwsWrQIS5cuxf79++Ho6IioqCjk5+dL++h0Ojz++ON44YUXKhzf8uXLkZCQID2GDBli1fdXF3Vr4glXezVScwpwIDYNp+OzkKvTw8VOhea+LtJ+ppSepTv5yHqmmihVOesRmuqkuHYeEZF8WB1E7dy5E9OmTYNGozHbHhwcjOvXr1t1rPnz52PcuHEYM2YMwsPDsXTpUjg4OJS7kPHChQvRv39/vP7662jRogXef/99dOjQAZ9//jkA4yzUggULMG3aNAwePBht2rTB999/j/j4eKxZs0Y6zrvvvotXX30VrVu3rnB8bm5u8PX1lR71YX1AtVKBqJY+AIC/T8ZLS710CfGAstQHvGkm6vCVdBh4x9htMwVHGpXlf3Jqrp1HRCQ7VgdRBoMBer2+zPZr167B2bnqa63pdDocPnwYffv2LRmMQoG+ffti7969Fl+zd+9es/0BICoqSto/NjYWiYmJZvu4uroiIiKi3GNWZMKECfD09ESXLl3w7bffSvVf5SkoKEBWVpbZoy4a2MYfALDhVCL2FC86fE+plgcA0MLPBfZqJbLyixCTwlq321VYVEk6zzQTxSCKiEg2rA6i+vXrZ9YPShAE5OTkYMaMGRgwYECVj5Oamgq9Xg8fHx+z7T4+PkhMTLT4msTExAr3N/1pzTHL89577+GXX37Bpk2b8Oijj+J///sfPvvsswpfM3v2bLi6ukqPwMBAq855p3QNbQA3BzVSc3TYccFY02YqKjdRKxVoF+gGAFIPKaq+wgoWHwZK10QxnUdEJBdWB1Hz5s3D7t27ER4ejvz8fDz55JNSKu+jjz6qiTHWinfeeQfdunVD+/bt8eabb+KNN97Axx9/XOFr3nrrLWRmZkqPq1ev3qHRWketVKB/y5Imms5aFcL9Xcrs19lUXM66qNtmWnxYZaG9AVB62RfORBERyYXVQVTDhg1x/PhxvP3223j11VfRvn17zJkzB0ePHoW3t3eVj+Pp6QmlUomkpCSz7UlJSfD1tdwl29fXt8L9TX9ac8yqioiIwLVr11BQUP56clqtFi4uLmaPumpAaz/p752C3c3qoUw6BhcXl/MOvdtm6v9kackXoFSfKLY4ICKSDauDqJSUFKhUKjz11FOYO3cuvvjiCzz77LOwt7fHyZMnq3wcjUaDjh07mt3RZzAYsGXLFkRGRlp8TWRkZJk7ADdt2iTtHxISAl9fX7N9srKysH///nKPWVXHjh2Du7s7tFrtbR2nrogMbQB3BzUAmC0BU1r7Rm4QBCAuLQ/J2fkW96GqKaxg8WHj9uLCcs5EERHJhtVBVOvWrfH333+X2f7JJ5+gS5cuVh1r0qRJ+Oqrr7BixQqcPXsWL7zwAnJzczFmzBgAwMiRI/HWW29J+7/yyivYsGED5s2bh3PnzmHmzJk4dOgQXnzxRQDG+qyJEydi1qxZWLt2LU6ePImRI0fC39/frD1BXFwcjh07hri4OOj1ehw7dgzHjh2TmoX+9ddf+Prrr3Hq1CnExMRgyZIl+PDDD/HSSy9Ze7nqLLVSgUn9mqFtQ1c83D7A4j4udmo08zHeLMC6qNtTutmmJSwsJyKSn2otQPzoo49izJgxmD9/PtLS0jBy5EicPHkSP/30k1XHGjp0KFJSUjB9+nQkJiaiXbt22LBhg1QYHhcXB0Wpdca6du2Kn376CdOmTcPUqVMRFhaGNWvWoFWrVtI+b7zxBnJzczF+/HhkZGSge/fu2LBhg1l7gunTp2PFihXS1+3btwcAbNu2Db169YJarcbixYvx6quvQhRFNGnSRGrHUJ+MuCcII+4JqnCfyNAGOJeYjQ2nEs1SgGQdUzpPxcJyIqJ6QxAru2/fgqNHj2LEiBEoKChAWloaIiIi8O2339523VF9k5WVBVdXV2RmZtbp+qiKHL+agcGLd0OrUuDQtL5wtlPX9pBkac3R65i46hi6N/HEj89GlHn+w/Vnsey/SxjfozGmDmhRCyMkIiKTqn5+V2vtvCZNmqBVq1a4fPkysrKyMHToUAZQ9VSbhq4I9XJEQZEB608mVP4CskhXSTrPVNjPjuVERPJhdRC1e/dutGnTBtHR0Thx4gSWLFmCl156CUOHDkV6Outm6htBEPBox4YAgN+PWNeRnkpUWljOFgdERLJjdRB13333YejQodi3bx9atGiBZ599FkePHkVcXFyly6iQPD3cPgCCAByITcPVtLzaHo4sVb4AsXF7EQvLiYhkw+og6t9//8WcOXOgVpfUxoSGhmL37t147rnnbDo4qhv8XO3RLdQTALCas1HVUundeSwsJyKSHauDqJ49e1o+kEKBd95557YHRHXTIx2MbRBWH71W6RqCVJau0nQeZ6KIiOSmykHUgAEDkJmZKX09Z84cZGRkSF/fuHED4eHhNh0c1R39W/nCQaPElRt5OMwO5laTFiBWVdzigIXlRETyUeUgauPGjWZLnnz44YdISytZU62oqAjnz5+37eioznDQqPBAK2OfKBaYW6+oeDmXcpd9YWE5EZHsVDmIujWFw5TO3efRjsaU3roT8cgv1NfyaOTFlM5TWVijEChdWM6ZKCIiuahWnyi6O90T0gABbvbIzi/C5rNJlb+AJJWm80wzUayJIiKSjSoHUYIgQBCEMtvo7qFQCNI6e7xLzzqVL0BcPBPFdB4RkWxUee08URQxevRoaLVaAEB+fj6ef/55ODo6AoBZvRTVXw93CMDn22Kw40IK0nJ18HDUWNzvm12xOHwlDaFeTmji7YSmPs4I8XSEnVp5h0dcN5TURFXc4oCF5URE8lHlIGrUqFFmXz/99NNl9hk5cuTtj4jqtFAvJ7Twc8HZhCxsPpOEJzoHltknPuMm3l93psx2lULAu4Nb4qmIihc9ro90RZUsQMwWB0REslPlIGr58uU1OQ6SkQda+eJsQhb+OZVgMYj6+4Rxjb0m3k7oHOyO6KQcXEjKRlZ+Eb7bffmuDKIqS+eV3J3HmSgiIrlgYTlZ7YFWxsWmd8WkIiu/sMzzf52IBwCM6hqM2Y+0wW8vdMXON++DSiEgOjkHcTfuvqVj0vN0AABnO8v/bylJ53EmiohILhhEkdXCfJwR6uWIQr2IrWeTzZ67nJqLE9cyoVQIGFAcbAGAq70anYM9AABbzt19d/Zdz7gJAGjoZm/xedMMlZ7pPCIi2WAQRdViarz5z6kEs+1/HTfOQnVr4okGTlqz5/q08AYAbD1nHnjVd6IoIr44iApwtxxEmdJ5hewTRUQkGwyiqFr6F88y7biQgjxdkbTdlMp7sI1fmdfc19wYRO27dAM5BUVlnq+v0nJ1yC80Bke+rnYW91GxxQERkewwiKJqaenvgkAPe+QXGrD9fAoA4HxiNi4k5UCjVKBfS98yr2ns5YQQT2MacFd0yh0d77GrGRj65V7suHBnzwuUpPK8nbXQqiy3eFArWVhORCQ3DKKoWgRBkFJ6G04lAgDWHjc24OzZzAuu9mqLrzPNRm05e2dTeiv2XMb+2DSM+/4Q9sSk3tFzV5bKAwCllM7jTBQRkVwwiKJqM6X0tp5LRn6hHn8dN9ZHPdjWv9zX9CkOoradT4bhDgYMh6+kAwB0RQY8+/0hHL6SVskrbOdaujGI8i+nqBwo3bGcM1FERHLBIIqqrV1DN/i62CGnoAhfbL+IuLQ82KuV6FtcQG5Jp2APOGtVSM3R4cT1zDsyzpTsAsSl5UEQgHsaeyBPp8fo5Qdx6g6dv7I78wCunUdEJEcMoqjaFApBmo36YlsMAKBvuA8cNOX3cNWoFOjR1AsAsPUOLWJ8JM44C9XU2xnLR3dBl2APZOcXYcQ3+3EhKbvGz1+VdB7XziMikh8GUXRbTEGUaQbF0l15t5Lqou5Qq4Mjxam8DkFusNco8c3oTmjT0BXpeYUY/e0BFBTpa/T8ppkof9cKZqJMheVscUBEJBsMoui2dA72gKeTcRFiZzsVejbzqvQ1vZp5QRCA0/FZSMzMt/qc6bk66IqqHmyYZqI6NHIvHqca3z/TBe4OasRn5uNMfJbVY7DG9fTKZ6JMa+cV6kWIImejiIjkgEEU3RalQkBUcTuD/i19y72Fv7QGTlq0D3QDYF3jzZs6Peb8cw6dP9iMUd8eqNJrdEUGHL9mrH3qGOQubXdz0KBt8RhO1WAQlacrQnqecWmcioMoQfo7u5YTEclDlRcgJirP61HN4O9mjye7NKrya/q08MGRuAxsPZeE/q18sTM6BTsupODQ5XQENXDAg239EdXSV2qVsPVcEqb/eVq6021frLFhp5O24h/hMwlZ0BUZ4O6gRoino9lzLf1dsP18Cs7E11yBuakeylmrgoud5bYPQEk6DzCmRqsQixIRUS1jEEW3zc1Bgwm9m1j1mvuae+Pjjeex9VwyOs7ahNIZrLi0POyMTsW0P06hV3F68N8zxiJ0f1c75BXqkZFXiJPXMhEZ2qDC85haG3Ro5A5BEMyea+XvCgA4db3mZqKuVSGVB5QUlgO8Q4+ISC6YzqNa0dzXGcENHGAQAVE0fv1cj8ZYProzJvdriqY+TtDpDfj3TBL+PZMEpULA+B6NsWlST3QtDpyOXc2o9DwlReXuZZ5rWRxEnU/MRmEN9WeKzzDWfFXUIwowT+exVxQRkTxwJopqhSAIWD6mC05dz0TnYA+zNeV6N/fGi/eF4VxiFtYei8eNHB1GdQ1GuL8LAKBdoBvWn0zEsavplZ7n1qLy0gI97OFsp0J2fhGik3Kk49vS9Yw8AEBAJUGUslQQVcg2B0REssAgimpNiKdjmTql0pr7uqB5/7KBTduGbgCA41crrmWKz7iJhMx8KBUC2ga6lnleEAS09HfBvktpOB2fWSNBlGkmqrJ0niAIUCkEFBlEtjkgIpIJpvNIdlo3dIVSISAxK7/CFgmmWagWfs7lNgA11UWdrqE79K5XYckXE6lXFGeiiIhkgUEUyY6DRoWmPs4AUGFKz1RU3tFCKs+kZYBx9ul0Dd2hZ2q0WVk6DwDUUq8ozkQREckBgyiSpXbF6bljFaT0KioqNzHNRJ2Jz7L5gshFegMSs4wzZQ0rSecBJTNR7BNFRCQPDKJIltoVN8osbyYqv1AvpegsFZWbNPZygp1agVydHpdv5Np0jEnZBdAbRKiVAryctJXur1KWdC0nIqK6j0EUyVK7QGNgdPJapsWZmxPXMlFkEOHtrK1wFkipENDCz5jSs3XnclM9lJ+rPRQKoZK9AbWC6+cREckJgyiSpSbeTnDUKJGr0yM6ObvM86VbG9zaZPNWLf1rpi4q3op6KABQFqfzOBNFRCQPDKJIlpQKAa0bGuuZjltouikVlVdQD2Ui3aFn487lpqLyqtyZB5QUlrPZJhGRPDCIItkypfRu7VwuimKVispNWgUUL/8SnwlRtN0sUFWXfDGRWhywsJyISBYYRJFsmYrLj8ZlmG3ffDYZN3J10KoUaBVQeQPNMB8nqBQCMvIKEV9B3ylrmdJ5Das4E6UyzUQxiCIikgUGUSRbpiDqQlI28nRFAIx35b2/7gwAYGz3EGhVykqPo1Uppb5Tp67bri7K6nSe1GyT6TwiIjlgEEWy5etqB18XOxhE4116APD1zkuIS8uDj4sWE3o3qfKxSorLbVMXJYqidHde1dN5bHFARCQnDKJI1kr6RWUgPuMmFm+7CACYOqAFHLVVXxrSVBd12kYzURl5hbhZqAcA+JVaXLkiSrY4ICKSFS5ATLLWrpEbNpxOxPFrGTgVn4WbhXp0DnbHQ239rTqOrWeiTKk8Tyct7NSVpxSB0uk8zkQREckBgyiStbYN3QAA286l4GahHgoBmPlQy0p7Q92qhZ8LBAFIzMpHak4BPKvQYbwi0pp5VUzlASwsJyKSG6bzSNbaNHSFQoCUOhvepRFaFvd9soajVoUQT0cAtpmNkuqh3KqWygNYWE5EJDcMokjWHLUq6c46V3s1JvdrVu1jmZpu2uIOvetWdisHSmaiCjkTRUQkCwyiSPb6tPAGALz1QHO4O2qqfZzWxcXla4/FQ1d0e7NB1i75ApRqtsmZKCIiWWAQRbL3at+m2PVmbwzr0ui2jvNox4bwcNTgfFI2vtgec1vHsrZHFACoFCwsJyKSEwZRJHsqpQIN3R1u+zgejhq8+1BLAMDnW2NwNqH6tVHW9ogCSvWJYosDIiJZYBBFVMqgNn7oF+6DIoOIN347Ua3UWn6hHjdydQCAhm5VD+5MheV6zkQR3fU+2Xge478/hEKm9+s0BlFEpQiCgFlDWsHVXo2T1zOxbOclq49hSuU5apRwsa96FxEWlhMRYFzxYNl/l/DvmSScuGa7pajI9hhEEd3C28UO0weFAwAWbI5GTHK2Va+PTsoBAAQ1cLSqXxULy4kIANJyddAV/x64nbICqnkMoogseKRDAHo184KuyIDXfzsBvRWzQ6YWCaa7/arKuXiZmrTiVCAR3Z0Ss/KlvzOIqtsYRBFZIAgCPny4NZy0KhyNy8D+2BtVfu2peGMQ1SrAxapzhno7AQBiknOseh0R1S9JpYKoc4nWzYTTncUgiqgc/m72uD/cBwCwOya1Sq8RRVGaiWpl5UxUmLexaWh0cg5EkXVRRHerxMwC6e/nErJgYJ1kncUgiqgC3Zp4AgB2xVRtJsq49p4OSoWAFn7WzUQ19nKEQgAybxYiJaeg8hcQUb2UmHlT+nuuTo9r6Tcr2JtqE4Moogp0Lw6iTl7LQGZeYaX7n7purF8I83aCnVpp1bns1Eo08jC2RIhJYkqP6G5VuiYKAM6wLqrOYhBFVAFfVzs08XaCQQT2Xqo8pXeymqk8kyalUnpEdHdKzDLORGtVxo/oc4kMouoqBlFElegupfQqD6JOm4Iof+tSeSZhPsbi8mgr2yoQUf2RlGmciYoMbQCAd+jVZQyiiCphqovaXYW6KNNMVOuG1ZuJCiu+Qy+a6Tyiu5Ypnde7mXFxdd6hV3cxiCKqRERjDygVAmJTc3EtPa/c/ZKz8pGcXQCFAKuLyk1Md+ixzQHR3emmTo/Mm8b6y17NvAAAV27kIaegqDaHReVgEEVUCRc7NdoFugEA9lQwG2XqDxXq5QQHTdWXeykt1NsRAHAjV4cbFu7Qu5SSgyGLd2PL2aRqHZ+I6jbTLJSDxnijiY+LFgBwnnVRdRKDKKIqMKX0dlZQF3XymvGXXHWLygHAQaNCQ3d7AJZno37YdwXHrmZgzj/n2EuKqB5KLK6H8nWxgyAIaO5rnNU+m8CUXl3EIIqoCkzF5XtiUsttfFfSqbz6QRRQqi7KQhC19+IN6Tne9kxU/5i6lfu42AEoKQ1gcXndxCCKqAraBbrBQaPEjVxduUWe1V0z71ZNyln+5UZOgdm51xy9flvnIaK6x5TO83U1BVHGOkkWl9dNDKKIqkCjUuCexsbbjS0tAZOaU4CEzHwIAhBezfYGJiXLv5j/0twfmwYAUCsFAMDa4/FWLYxMRHWfKZ1360wUl3+pmxhEEVVRtwr6RZlmoUI8HeGkrV5RuUkTH8ttDvZcNJ73iU6BcHNQIymrAPsuVX1hZCKq+0xBlF/xTFSIpyM0SgWXf6mjaj2IWrx4MYKDg2FnZ4eIiAgcOHCgwv1//fVXNG/eHHZ2dmjdujXWr19v9rwoipg+fTr8/Pxgb2+Pvn37Ijo62myfDz74AF27doWDgwPc3NwsnicuLg4DBw6Eg4MDvL298frrr6OoiLeY3s1MdVH7Y2+goEhv9py06LD/7aXygJJ0XnJ2gXSrM1BSD9WjqRcGtPYDAPzBlB5RvZJ4S02UWqmQmvCyDrLuqdUgatWqVZg0aRJmzJiBI0eOoG3btoiKikJycrLF/ffs2YPhw4dj7NixOHr0KIYMGYIhQ4bg1KlT0j5z587FokWLsHTpUuzfvx+Ojo6IiopCfn7JWkQ6nQ6PP/44XnjhBYvn0ev1GDhwIHQ6Hfbs2YMVK1bgu+++w/Tp0217AUhWmvo4wdNJi/xCA45cyTB7zrRm3u3WQwHGlgq+xb9ATXVRSVn5uJiSC0EA7glpgIfbBwAANpxKRH6hvtxjEZG8JN1SEwWg1B16DKLqmloNoubPn49x48ZhzJgxCA8Px9KlS+Hg4IBvv/3W4v4LFy5E//798frrr6NFixZ4//330aFDB3z++ecAjLNQCxYswLRp0zB48GC0adMG33//PeLj47FmzRrpOO+++y5effVVtG7d2uJ5/v33X5w5cwY//vgj2rVrhwceeADvv/8+Fi9eDJ1OZ/PrQPIgCAK6NzHWRe2KSTF77nbXzLuV6X+eMcV1Uaa0XUt/F7g6qNGxkTsC3OyRU1CEzewZRVQv6A0ikrON/eFM/5ECSheXM4iqa2otiNLpdDh8+DD69u1bMhiFAn379sXevXstvmbv3r1m+wNAVFSUtH9sbCwSExPN9nF1dUVERES5xyzvPK1bt4aPj4/ZebKysnD69OkqH4fqn3vDjB2Ev94Zi18PXQUApOfqcD3DWKvQMuD2ispNmtyy/IupyWfXUGNKUaEQMKS9PwDepUdUX9zIKYDeIEIhAJ5OGml7uB97RdVVtRZEpaamQq/XmwUqAODj44PExESLr0lMTKxwf9Of1hzTmvOUPoclBQUFyMrKMntQ/fJgW3/0ae6NgiIDXv/tBN7+4ySOxKUDAIIbOMDFTm2T85TcoWcMovYWz0RFFt8hCABD2hlTetvPpyAtlzOkRHJnqofyctZCpSz5eG5eHETFpXH5l7qm1gvL65PZs2fD1dVVegQGBtb2kMjGNCoFvhrZCa/2bQpBAFbuj8NL/3cUANDSRqk8oHQ6LwfX0vMQl5YHpUJA5xCPUvs4o6W/C4oMIv4+mWCzcxNR7Ugo1a28NA9HDZd/qaNqLYjy9PSEUqlEUpJ5PUdSUhJ8fX0tvsbX17fC/U1/WnNMa85T+hyWvPXWW8jMzJQeV69erfI5ST4UCgGv9A3Dt6M6w8VOhTydsbDbFkXlJk28jEHU9Yyb2HLWeKNFm4auZdonmGajmNIjkj9LReUmXP6lbqq1IEqj0aBjx47YsmWLtM1gMGDLli2IjIy0+JrIyEiz/QFg06ZN0v4hISHw9fU12ycrKwv79+8v95jlnefkyZNmdwlu2rQJLi4uCA8PL/d1Wq0WLi4uZg+qv3o398a6l+5FCz8XKATg3jBPmx3b3VEDTyfj/zx/2HcFgHkqz+Shdv4QBODwlXRcuZFrs/MT0Z2XWM5MFMDlX+qq2+sKeJsmTZqEUaNGoVOnTujSpQsWLFiA3NxcjBkzBgAwcuRIBAQEYPbs2QCAV155BT179sS8efMwcOBA/Pzzzzh06BCWLVsGwHj31MSJEzFr1iyEhYUhJCQE77zzDvz9/TFkyBDpvHFxcUhLS0NcXBz0ej2OHTsGAGjSpAmcnJzQr18/hIeHY8SIEZg7dy4SExMxbdo0TJgwAVqt9o5eI6rbGjVwwLqXuiPzZiE8HDWVv8AKYd5OSM0pkNocmIrKS/NxsUP3Jp7YGZ2K3w9fw6R+zWw6BiK6c6QeURZmokx36LFXVN1Sq0HU0KFDkZKSgunTpyMxMRHt2rXDhg0bpCLuuLg4KBQlk2Vdu3bFTz/9hGnTpmHq1KkICwvDmjVr0KpVK2mfN954A7m5uRg/fjwyMjLQvXt3bNiwAXZ2JT+U06dPx4oVK6Sv27dvDwDYtm0bevXqBaVSiXXr1uGFF15AZGQkHB0dMWrUKLz33ns1fUlIhpQKweYBFGCsizIVlKuVAjoGuVvc77GODY1B1JHrmNi3KRQKweZjISLbEEURb/x2AoIAfPRoGwhCyb9XKZ1nYSbKdIfe+cRs6A0ilPx3XicIoihyMZ4akpWVBVdXV2RmZjK1R1b7Ye9lvPOnsaVGlxAP/PKc5ZR0fqEenT/YjOz8Ivw4NgLdbZhWJCLbOhOfhQGLdgIA1r98r9lam/fN245LKbn46dkIdG1i/u+4SG9AyxkbUVBkwNbXeqJxcd0k1Yyqfn7z7jyiOqpJcZsDwHI9lImdWomH2hp7Rv16uPKbGURRxL5LNzDl9xOYte4MDsSmcSFjojvkv+iSRr3bL5ivzpGUWX46T6VUoLmv8XcCi8vrjlpN5xFR+UxtDgCga2j5QRQAPN4pECv3x2HDqURk3iyEq33ZflW5BUVYc+w6vt9zBeeTSn4Jf70rFg0cNejbwgf9W/uiV1MvsxRDbUnL1eH5Hw7jntAGmHR/09oeDpFN/HehVBB1PgX/69UEAJCdX4jc4jt9LaXzACDc3wXHr2XiTEImBrbxq/nBUqUYRBHVUQ0cNejf0hdpeTq0b2S5HsqkbUNXhHk7ITo5B+tOxOOpiCCz5//vQBw+XH8W2fnGRn32aiWGtPdHQaEBm88m4UauDqsOXcWqQ1fxcPsAfPRoG2hUtTtRvXTHRRy4nIajV9MxtlsIXB1s08iUqLbk6Ypw6HK69PXhK+nIyi+Ei51aqodytlPBUWv5o9lUF3UmnsXldQWDKKI6ShAELB3Rscr7Pt6pIT5cfw6/HrpmFkRtO5+MqX+chCgau6qPiAzGYx0bSrNVhXoDDsSmYcOpRPzfgTj8cfQ6EjPzsXRER4szWndCak4Bfth7pXh8IjaeScQTndi8luRt/6U06PQGBLjZQ6tW4FJKLnZHp+KB1n5IzCy7Zt6tTPVTvEOv7mBNFFE9MaR9AJQKAceuZkgLF8em5uLl/zsKUQSGdQ7E1td6YWz3ELPgSK1UoFsTT7w/pBW+Hd0Zjhol9l66gceX7pHWBLxdOQVFSC7+n3ZVfLXzEm4W6mHKKv59gh3ZSf52FKfyejT1Qq+m3gCMKT2gpL2BpUabJs18XSAIQFJWAVJzCmp4tFQVDKKI6glvZzv0bmZcIPnXQ9eQnV+Icd8fQnZ+EToGueO9wa0qbX/Qo6kXfnk+Ej4uWlxIysHDi3fjdHzmbY1LFEU8+dU+9Ph4W5VWoU/L1UmzUFMfaAEA2B2TinSuD0gyZyoq79nUE72K/63uuJACURSRmGn8D4tPBTNRTloVghs4AmDTzbqCQRRRPfJYR2PKa/XR63h11XHEJOfAx0WLJU93qHKNU0t/V/zxv25o6uOE5OwCjF5+EAVF+mqP6djVDJy4lon8QgM+XH+u0v2/3nkJeTo9WgW44Nl7Q9DCz7g+4MbTVV9EnKiuuZaeh0spuVAqBESGeqJLiAfs1UokZuXjXGJ2yUxUBUEUUFIXxSCqbmAQRVSP3NfcGx6OGqRkF2Dz2SRoVAp8OaITvJ0r/sV8K383e/z6fFf4uGiRkl2ArWeTK39ROf4ota7ffxdSpJSGJem5OqzYcxkA8PJ9YRAEAYOK70LiIsskZ/9dSAUAtAt0g6u9GnZqJSKL77rdfj5Fqomy1N6gNKlzOYvL6wQGUUT1iEalkBYlBoAPhrRCu0C3ah3L1V6NRzo0BAD8dvhatY6hKzJg7fF4AEDb4nHMXn+23L5U3+yKRa5Oj3A/F9wfbly5wBRE7bl4AzdYB0IyZWpt0CPMS9pmSultP59cYbfy0lhcXrcwiCKqZ8Z0C0aYtxMm9g3D47d5R9ujxUHU9gspSM6uemG4yfbzycjIK4S3sxbfjuoEFzsVziVm43cLQVlGng7fmWah+oRJvaqCGjiidYAr9AYRG5jSIxkq0huw+6JxJqpH05JO5D2bGoOo0guI+1UyExXu5woAuJiSi/zC6qfZyTYYRBHVM4EeDtg0qScm9r39BpVNvJ3QvpEb9AYRfx6Nt/r1q48YU3lD2geggZMWL/cJAwB88u955OmKpP10RQbM3XgeOQVFaO7rjH7Fs1AmptmodceZ0iP5OX4tA9n5RXBzUKNNQzdpe1ADR4R4OqLIICKruIdbRYXlxue18HDUQG8QcSGJnctrG4MoIqrQYx1LUnrWLLWZkafD1nPGWqqH2xtTjCMigxDoYY/k7AJ89V8sAGBXdCoeWPgfftofBwAWF1Ee0NoYRO2PvVGtGTGi2rSjuB6qWxPPMgsHm2ajAONC4w0qWcxcEAQ23axDGEQRUYUGtfGHVqXA+aRsnLpe9V/a604kQKc3oIWfC1oU/9LXqpR4s39zAMCX/13E8z8cxtPf7MfFlFw0cNTgk8fbon8r3zLHCvRwQLtANxhEYMMppvRIXkz1UD1L1UOZmOqiAGObksrakACsi6pLGEQRUYVc7dWIamkMbH6rwgLHJquPGOueHmkfYLZ9YGs/tG/khjydHhtOJ0IhAKO7BmPr5F7SrJclUkqPjTdJRjLydDhxLQMAcG+peiiTexo3gLa4/YiPi7ZKx2Sbg7qDQRQRVcoU3Px5PL5KPaMup+biSFwGFAIwuJ2/2XOCIODdh1rC1V6NiBAP/P3yvZhZ/HVFTCm9g5fTkJBpm07qdwODQcTSHRex9+KN2h7KXWlXTCoMIhDm7QQ/V/syz5dudVBRt/LSTDNRZxOyYSjnTle6MxhEEVGlujXxhK+LHTLyCrGlCj2jVhf3huoe5gVvC4WybRq64dj0+7HquUgp1VcZfzd7dAxyhygCjy3Ziy1nk6z7Ju5S/55JxJx/zuGl/zuCIr2htodz19l5wXRXXtlUnsmwzo0AGP+dVUVjT0doVArkFBThanre7Q+Sqo1BFBFVSqkQ8EgHY1qudM+ozLxCrD+ZgF8OXsWB2DSk5hTAYBDxx1HjPo92CLB4PABSCwNrvPtQSwS42eN6xk2MXXEIz/1wiLNSlfj3tDHYTM3RYd+ltFoezd1FFEXsijEGUfeGlR8g9W/li9PvRuHJLo2qdFyVUoFmPmy6WReoansARCQPj3VsiC+2X8SOCymY9+957Ll4A0fj0nFrNsFJq0JOQREcNUr0Cy9bJH47WgW4YtOkHli0JQZf77yEjaeTsCs6Fc/3DMUTnQMrvT38blOkN2Dr+ZKZw7+Ox6N7BR/mZFuXb+ThesZNaJQKdAnxqHBfR611H8fhfi44eT0TZxKy8EBxqpvuPM5EEVGVNPZyQscgd+gNIj7bGoPDV9KlWo97wzzR0N0eggDkFBj73QxuHwB7jdLm43DQqDDlgeZY93J3dAxyR65Oj3mbLiBy9haMWX4A608mSHVb+YV6JGTexJn4rLty1fuDl9ORkVco3Vb/z6kE6IqY0rtTTLNQHYLc4KCx7ZyFdIceZ6JqFWeiiKjKXu3bFNP/PIWmPs7o2cwLPZp6IcCtpFg2v1CPuLQ8JGcVoGOQe42OpbmvC359LhJ/Hr+On/bH4eDldGw7n4Jt51PgoFHCIIrILywJGFzsVNj4ag+Lxb311aYzxlTe4Lb+2BWTiuTsAuyMTkGfFj6VvJJsYXe0MYjqXsVaJ2uUFJcziKpNDKKIqMq6h3li6+Re5T5vp1aiqY8zmhbXa9Q0hULAw+0b4uH2DXEpJQe/Hb6G349cQ1JWyayTSiFAqRCQlV+EmWtP48sRne7I2GqbKIr494yxp1a/lr5wsVfjuz2Xse5Ewl0bROXpinD4Sjr2X0qDs50K4+5tXKW+TNWhN4jYc7GkyaatNfc1/huLz8xHeq4O7pU06aSawSCKiOqFxl5OeKN/c0y6vykupuTCQaOEm4MaTloVzidlY9CiXdh4OgmbziRJixvXZ+cSs3Et/Sa0KgV6NPWEl7MW3+25jH9PJyK/UA87te1TrXVRfqEeS7ZfxM7oFJy4lomiUkV8oV5O6FtDPwsnr2ciK78IznYqs6VebMXZTo3gBg64fCMP/0WnYHA7yzdxXE3Lw87oVDzRqSFUSlbw2BqvKBHVKyqlAs18nRHo4QBnOzUEQUBzXxc8e29jAMCMP08ht6CokqPInymVd2+YJxw0KnRo5IYAN3vk6vTYdq7yNhX1xay/z2DhlmgcictAkUFEgJu91Kzyq52Xauy8u4vrobqGNiiz1IutDCluZPvFtosW+0UV6Q0Y891BTP3jJL7fe6VGxnC3YxBFRHeFV/qEoaG7PeIz8/Hppgu1PZwaZwqiTLNugiBgUFvjXVx/nbB+MWk5is+4iVUHjV32pw1sgZ1v9MbuKffhm9GdoFII2B+bhpPXMmvk3DujjUu91EQ9lMmYriFwLp5p3Xi67HJIvxy6hpjkHADAj/uuWLX2JVUNgygiuivYa5R4f0grAMDyPZdx6nrNfHjWBQmZN3HyeiYEAbiveUm66sE2xu7xW88lS3dR1mdLtl9EoV7EPY098Oy9jRHo4QAA8HO1x4NtjdeiJmaj8nRFOHIlA4Cx4WxNcXVQY0y3YADAwi3RZrNROQVFmF/qPwuXUnOxh13rbY5BFBHdNXo388bANn7QG0S8/cdJ6Ovpkhmbi2ehOjRyh5dzyXpsLf1dEOLpiPxCQ73v+J6QWTIL9UqfpmWef/beEADA3ycTcD2j8oatoihix4UULPvvIj7eeA7T1pzES/93FJNWHUNKtnn7jIOX06HTGxDgZo/gBg42+G7K90z3EDhpVTiXmI1/z5S8p8v+u4TUnAIEN3DAsM6BAIyzUWRbLCwnorvKjEHh+O98Co5fy8RjS/egc7AH2jR0RduGbsW9rmxXv1KkN+DvkwlYvvsysvILEejugEYexkeotyPuDfOCuoJi36z8QjhrVVaP6d9bUnkmgiDgwTZ+WLQ1Bn8djy+3GLk+WLL9InR6A7qEeEhr05XW0t8VXUMbYM/FG1i+KxbTBoVXeLylOy7how3nLD6XklOAFWO6SHf67SpO5XVr0sCmP0+WuDloMLprMD7fFoNFW6IR1dIHydkF+Oo/4wzbm/2bI8TLET8fvIp/zyQhKSufTWltiEEUEd1VvF3s8M6D4Xjz9xM4GpeBo3EZJc85a9E33Af9wn3QNdQTGlX5AY4oiohOzsH+SzegUSkQ5uOMMG8nONupoSsyYPWRa1iy4yKu3ChZ2+xSSq7ZMe5p7IElT3Usc3t6od6AOf+cwze7YhHu54Jn7w3BoDb+FY7HJCu/EPsuGdM2/SzceTaorT8WbY3Bjgsp9fbW+MTMfPx8wDgLNbFvWLn7jbu3MfZcvIGfD17Fy33D4GJneRHsjacTMXejMYDqF+4Dfzd7uNir4aBRYsHmC9gZnYqvd13C+B6hAIBdMcbrX5OpvNLGdg/B8t2xOJOQhc1nk7H5TBJuFurRMcgd/Vv5QhAEdA52x8HL6fi/A3GY2LfszFxNSczMx5UbuYhoXDaQrQ8YRBHRXeeJToHoGOSOw5fTcfxaBk5cy8S5xCwkZxfgp/1x+Gl/HJy1KvRs5oUwb2e42qvg6qCGq70a2flF2Bmdip3RKWb9qEz8XO2gN4hILk7xuDuo8Uy3EHQIcsfVtDzEpeXhavpNbD2bhH2X0jDki934ZlRnNPF2AgCk5hRgwsoj2B9rXOfuTEIWJv1yHHP+OYdRXYPxZJdGFQY+28+noFAvItTLEY29nMo839THGc18nHE+KRs9Pt6Gh9r64/FOgWjb0LXGZ03ulCXbY4yzUMEeiKzgw7tnUy808XZCTHIOVh24inE9GpfZ59T1TEz8+RhEERgZGYT3Brcye97VXo23Vp/ExxvPI7KxJ/zc7KQGmF0tzIDVBHdHDUZ1DcYX2y/i/XVncK14UeKpA1pI7+nT9wRJQdSE3k0qnAG1lfiMmxi8eDdSsgvwzahO9bI/mSCyXL/GZGVlwdXVFZmZmXBxqdpK9URUO/IL9dgfm4Z/Tydi05kkKQiqiFalQOdg45poF5KyzV7j46LFuHsb48mIRhaX/DiXmIVnVxzCtfSbcLZTYfGTHeBir8YLPx5GQmY+HDVKzHq4FeIz8rFiz2WzYwd62KOZjzOa+TqjibcTcvKLEFccoB27moGkrAI83zMUUx5obnHc+y/dwKRfjpvVAjX1ccLIyGAM6xwo635CiZn56PHxNuiKDFj5bESljS5/PhCHKatPwt/VDjve6G0WXCRn5WPw4t1IyMzHvWGeWD66c5lrI4oiXvjxCDacTkSIpyOe69EYU1afRLifC9a/cm+NfI+WpOXq0P2jrcjTGZc8GtDaF1881VF6vqBIj66zt+JGrg5Ln+6A/q1qdr293IIiPLZ0rxRQhno5YuPEHrL52arq5zeDqBrEIIpIngwGEceuZWD7+RSkZOcj82Yhsm4WIfNmIRQCcE/jBrg3zAudgt3NmlZm5hUiJiUbWTeL0LVJA2hVFTe0TM0pwPM/HMahK+lQCIBKoYBOb0BjL0csG9ERTbyNXal1RQb8dTwe3+wypmwqoxCAdS/dKy0NUt73uPfSDfxy6Co2nEpEQfGaek19nDDjwZY10mX7Tpi59jS+23MZnYPd8ctzkZXOruUX6tH9o61IzdHh2e4huKdxA/i52cHTSYvx3x/C8WuZCPVyxOr/dYOrveV0X0aeDg8s3ImEzHxoVQoUFBkwvkdjTB3Qoia+xXLN/ucsvtxxCWqlgE2v9kSwp6PZ8x9tOIcl2y+iexNP/PhshLQ982YhziVkoVOwh016WukNIp774RA2n02Gp5MGeoOI9LxCzBrSCk/fE3Tbx78TGETVAQyiiKgyBUV6TF19Cr8fuQbAWAw+/4m2cC6nPictV4fzidm4kJSNc4nZuJSSAxd7tVSw3sjDAc18neHvVvU1AjNvFuL3w9ewaGs0MvIKAQBRLX3w9oBwBHrYQ28QUagXoSsyIFdnDCZNj5z8IthrlHC2U8HZTg1nOxWUgoCcgiJk5RciO78IeboihHk7I9zPpUrLrBgMIs4mZiEpKx9dQz2r1F39cmouPtpwDv+cMvZL+nFsBLqHVS0QXLQl2qwdQGnuDmqsmdANQQ0cLT5vsu/SDQz/ah9Mn6grnumCnk3vTE2USUaeDq//dgI9wjwxIjK4zPNX0/LQ4+NtEEVg62s9kafT48d9V/DnsXjcLNRjUBs/LBzW/rYDqVnrzuDrXbHQqBRYNf4enLiWiRlrT8PTSYPtr/eGk7buVxIxiKoDGEQRUVWIoog1x65DV2TA4x0Da2w9t8pk5OmwYHM0fth3BXqDCNMkjq0+JRo4atA9zBPdm3iifSN3aEqldgoNBhyLy8DO6BTsiklFao4OAODppMW4e0Pw1D1BFj9803N1WLQ1Gj/uu4JCvQiFYCy0Ll0PVJmbOj0+2xqNiyk5SMjMR3zGTaTm6GCvVmL5mM64p4pF0Z9sPI/Pt8VAo1Tg+Ix+sNfUvaV1nvnuILaeS4aHowZpuboyzz/WsSHmPtqm2j+DP+2Pw9Q/TgIAPhveHg+29Ueh3oB+n/6H2NRcvHRfE7zWr5nVx912Phmrj1zH6K7BNb64OcAgqk5gEEVEcnQhKRvvrzuDndGpZZ5TKQS42huL7F3sjTNP+YV6ZOcXITvfOPtkMIhwtlPDyU4FZzsVNEoFTl3PRG5xvU5VOGiUcNSqpB5MrvZqjO4ajLaBrrhyIw9XbuTh8o1cHL6Sjux8Y+PQXs288NYDLdDM9/YXwM4v1MMgihbr2cpTqDdg/qYLaOzpiMc7Bd72GGrC1nNJeOa7QwAAtVLAA638MCIyCKnZBXjx/45CbxAx4p4gvDe4pRSEiqKIndGp2Hg6EZ5OWoT5OCHM2xkhno7QG0QcjUvH/tg0HLychv2xadAbREy6vyle7lNyZ+SGUwl4/scjsFMrsH1yb/i6Vq3NgsEgYtHWaCzYHA0AUCoETOwThv/1blJjy+kADKLqBAZRRCRnKdkFECFCo1RArVRAo1JApRCqdRefrsiAo3Hp2BWTiv8upEjLkZTW2MsJPZp64t4wL3Ro5A5BANYcvY4l2y/iUmquhaMatfBzwdsDWlQ5fXc3E0URy/67BINonHUq3Yx1zdHrePUX452I4+4NwetRzfHX8Xh8tfMSziVmlzmWUiFAAMwWdQaAxzs2xNzH2pj9nIiiiMeX7sWhK+l4olNDzH2sbaVjzcovxKRVx7D5rHGtx5b+Ljgdb6wJ7BLsgU+HtUOAFWlrazCIqgMYRBER3T69QcSGU4lYvjsWOQVFCG7giCBPBwQ3cERjT0ebFUQT8H8H4vDWamM6ztVejcybxho5B40SQ9oHQK8XcSE5GzFJOcguXjrIz9UOnYM90DnEAxEhHgjzdrIYaB+JS8cjX+yBIAAfP9YWN3IKcC4xG2cTspCao0OolyNa+Lmgua8zfFzs8N66M4hNzYVGpcCHD7fGox0C8MfR63hnzSnk6vRwsVNhzqNtMKC17e80ZBBVBzCIIiIiuVm+Oxbv/nUGAODlrMXorsF4OiIIrg4lNzuIoojErHwYRMDf1a7Ks5MTVh7B3ycTqjyWADd7LH26I1o3dJW2XbmRi5d/PobjVzMAAGtf7IY2Dd2qfMyqqOrnd90vkSciIqI7Zky3EAS42eNmoR79W/labNUhCAL8XK1PpU15oLmxd5QAtPB1QQs/ZzT3dYG3ixbRSTk4l5iFswnZiEnOQZuGrpj9SGs0cNKaHSOogSN+ez4SCzZfQFpuoc0DKGtwJqoGcSaKiIio5oiiWCOd9qv6+S2P1qFEREREt6jtpYoYRBERERFVA4MoIiIiompgEEVERERUDQyiiIiIiKqBQRQRERFRNTCIIiIiIqoGBlFERERE1cAgioiIiKgaGEQRERERVQODKCIiIqJqYBBFREREVA0MooiIiIiqgUEUERERUTWoansA9ZkoigCArKysWh4JERERVZXpc9v0OV4eBlE1KDs7GwAQGBhYyyMhIiIia2VnZ8PV1bXc5wWxsjCLqs1gMCA+Ph7Ozs4QBMFmx83KykJgYCCuXr0KFxcXmx2XyuK1vnN4re8cXus7h9f6zrLV9RZFEdnZ2fD394dCUX7lE2eiapBCoUDDhg1r7PguLi78R3mH8FrfObzWdw6v9Z3Da31n2eJ6VzQDZcLCciIiIqJqYBBFREREVA0MomRIq9VixowZ0Gq1tT2Ueo/X+s7htb5zeK3vHF7rO+tOX28WlhMRERFVA2eiiIiIiKqBQRQRERFRNTCIIiIiIqoGBlFERERE1cAgSoYWL16M4OBg2NnZISIiAgcOHKjtIcna7Nmz0blzZzg7O8Pb2xtDhgzB+fPnzfbJz8/HhAkT0KBBAzg5OeHRRx9FUlJSLY24/pgzZw4EQcDEiROlbbzWtnX9+nU8/fTTaNCgAezt7dG6dWscOnRIel4URUyfPh1+fn6wt7dH3759ER0dXYsjlie9Xo933nkHISEhsLe3R2hoKN5//32ztdd4ravnv//+w4MPPgh/f38IgoA1a9aYPV+V65qWloannnoKLi4ucHNzw9ixY5GTk3PbY2MQJTOrVq3CpEmTMGPGDBw5cgRt27ZFVFQUkpOTa3tosrVjxw5MmDAB+/btw6ZNm1BYWIh+/fohNzdX2ufVV1/FX3/9hV9//RU7duxAfHw8HnnkkVoctfwdPHgQX375Jdq0aWO2ndfadtLT09GtWzeo1Wr8888/OHPmDObNmwd3d3dpn7lz52LRokVYunQp9u/fD0dHR0RFRSE/P78WRy4/H330EZYsWYLPP/8cZ8+exUcffYS5c+fis88+k/bhta6e3NxctG3bFosXL7b4fFWu61NPPYXTp09j06ZNWLduHf777z+MHz/+9gcnkqx06dJFnDBhgvS1Xq8X/f39xdmzZ9fiqOqX5ORkEYC4Y8cOURRFMSMjQ1Sr1eKvv/4q7XP27FkRgLh3797aGqasZWdni2FhYeKmTZvEnj17iq+88oooirzWtvbmm2+K3bt3L/d5g8Eg+vr6ih9//LG0LSMjQ9RqteL//d//3Ykh1hsDBw4Un3nmGbNtjzzyiPjUU0+JoshrbSsAxD/++EP6uirX9cyZMyIA8eDBg9I+//zzjygIgnj9+vXbGg9nomREp9Ph8OHD6Nu3r7RNoVCgb9++2Lt3by2OrH7JzMwEAHh4eAAADh8+jMLCQrPr3rx5czRq1IjXvZomTJiAgQMHml1TgNfa1tauXYtOnTrh8ccfh7e3N9q3b4+vvvpKej42NhaJiYlm19vV1RURERG83lbq2rUrtmzZggsXLgAAjh8/jl27duGBBx4AwGtdU6pyXffu3Qs3Nzd06tRJ2qdv375QKBTYv3//bZ2fCxDLSGpqKvR6PXx8fMy2+/j44Ny5c7U0qvrFYDBg4sSJ6NatG1q1agUASExMhEajgZubm9m+Pj4+SExMrIVRytvPP/+MI0eO4ODBg2We47W2rUuXLmHJkiWYNGkSpk6dioMHD+Lll1+GRqPBqFGjpGtq6XcKr7d1pkyZgqysLDRv3hxKpRJ6vR4ffPABnnrqKQDgta4hVbmuiYmJ8Pb2NntepVLBw8Pjtq89gyiiUiZMmIBTp05h165dtT2Ueunq1at45ZVXsGnTJtjZ2dX2cOo9g8GATp064cMPPwQAtG/fHqdOncLSpUsxatSoWh5d/fLLL79g5cqV+Omnn9CyZUscO3YMEydOhL+/P691PcZ0nox4enpCqVSWuVMpKSkJvr6+tTSq+uPFF1/EunXrsG3bNjRs2FDa7uvrC51Oh4yMDLP9ed2td/jwYSQnJ6NDhw5QqVRQqVTYsWMHFi1aBJVKBR8fH15rG/Lz80N4eLjZthYtWiAuLg4ApGvK3ym37/XXX8eUKVMwbNgwtG7dGiNGjMCrr76K2bNnA+C1rilVua6+vr5lbr4qKipCWlrabV97BlEyotFo0LFjR2zZskXaZjAYsGXLFkRGRtbiyORNFEW8+OKL+OOPP7B161aEhISYPd+xY0eo1Wqz637+/HnExcXxulupT58+OHnyJI4dOyY9OnXqhKeeekr6O6+17XTr1q1Mu44LFy4gKCgIABASEgJfX1+z652VlYX9+/fzelspLy8PCoX5R6pSqYTBYADAa11TqnJdIyMjkZGRgcOHD0v7bN26FQaDAREREbc3gNsqS6c77ueffxa1Wq343XffiWfOnBHHjx8vurm5iYmJibU9NNl64YUXRFdXV3H79u1iQkKC9MjLy5P2ef7558VGjRqJW7duFQ8dOiRGRkaKkZGRtTjq+qP03XmiyGttSwcOHBBVKpX4wQcfiNHR0eLKlStFBwcH8ccff5T2mTNnjujm5ib++eef4okTJ8TBgweLISEh4s2bN2tx5PIzatQoMSAgQFy3bp0YGxsrrl69WvT09BTfeOMNaR9e6+rJzs4Wjx49Kh49elQEIM6fP188evSoeOXKFVEUq3Zd+/fvL7Zv317cv3+/uGvXLjEsLEwcPnz4bY+NQZQMffbZZ2KjRo1EjUYjdunSRdy3b19tD0nWAFh8LF++XNrn5s2b4v/+9z/R3d1ddHBwEB9++GExISGh9gZdj9waRPFa29Zff/0ltmrVStRqtWLz5s3FZcuWmT1vMBjEd955R/Tx8RG1Wq3Yp08f8fz587U0WvnKysoSX3nlFbFRo0ainZ2d2LhxY/Htt98WCwoKpH14ratn27ZtFn9Hjxo1ShTFql3XGzduiMOHDxednJxEFxcXccyYMWJ2dvZtj00QxVLtVImIiIioSlgTRURERFQNDKKIiIiIqoFBFBEREVE1MIgiIiIiqgYGUURERETVwCCKiIiIqBoYRBERERFVA4MoIqIaEhwcjAULFtT2MIiohjCIIqJ6YfTo0RgyZAgAoFevXpg4ceIdO/d3330HNze3MtsPHjyI8ePH37FxENGdpartARAR1VU6nQ4ajabar/fy8rLhaIioruFMFBHVK6NHj8aOHTuwcOFCCIIAQRBw+fJlAMCpU6fwwAMPwMnJCT4+PhgxYgRSU1Ol1/bq1QsvvvgiJk6cCE9PT0RFRQEA5s+fj9atW8PR0RGBgYH43//+h5ycHADA9u3bMWbMGGRmZkrnmzlzJoCy6by4uDgMHjwYTk5OcHFxwRNPPIGkpCTp+ZkzZ6Jdu3b44YcfEBwcDFdXVwwbNgzZ2dk1e9GIqFoYRBFRvbJw4UJERkZi3LhxSEhIQEJCAgIDA5GRkYH77rsP7du3x6FDh7BhwwYkJSXhiSeeMHv9ihUroNFosHv3bixduhQAoFAosGjRIpw+fRorVqzA1q1b8cYbbwAAunbtigULFsDFxUU63+TJk8uMy2AwYPDgwUhLS8OOHTuwadMmXLp0CUOHDjXb7+LFi1izZg3WrVuHdevWYceOHZgzZ04NXS0iuh1M5xFRveLq6gqNRgMHBwf4+vpK2z///HO0b98eH374obTt22+/RWBgIC5cuICmTZsCAMLCwjB37lyzY5aurwoODsasWbPw/PPP44svvoBGo4GrqysEQTA73622bNmCkydPIjY2FoGBgQCA77//Hi1btsTBgwfRuXNnAMZg67vvvoOzszMAYMSIEdiyZQs++OCD27swRGRznIkiorvC8ePHsW3bNjg5OUmP5s2bAzDO/ph07NixzGs3b96MPn36ICAgAM7OzhgxYgRu3LiBvLy8Kp//7NmzCAwMlAIoAAgPD4ebmxvOnj0rbQsODpYCKADw8/NDcnKyVd8rEd0ZnIkiortCTk4OHnzwQXz00UdlnvPz85P+7ujoaPbc5cuXMWjQILzwwgv44IMP4OHhgV27dmHs2LHQ6XRwcHCw6TjVarXZ14IgwGAw2PQcRGQbDKKIqN7RaDTQ6/Vm2zp06IDff/8dwcHBUKmq/qvv8OHDMBgMmDdvHhQK4+T9L7/8Uun5btWiRQtcvXoVV69elWajzpw5g4yMDISHh1d5PERUdzCdR0T1TnBwMPbv34/Lly8jNTUVBoMBEyZMQFpaGoYPH46DBw/i4sWL2LhxI8aMGVNhANSkSRMUFhbis88+w6VLl/DDDz9IBeelz5eTk4MtW7YgNTXVYpqvb9++aN26NZ566ikcOXIEBw4cwMiRI9GzZ0906tTJ5teAiGoegygiqncmT54MpVKJ8PBweHl5IS4uDv7+/ti9ezf0ej369euH1q1bY+LEiXBzc5NmmCxp27Yt5s+fj48++gitWrXCypUrMXv2bLN9unbtiueffx5Dhw6Fl5dXmcJ0wJiW+/PPP+Hu7o4ePXqgb9++aNy4MVatWmXz75+I7gxBFEWxtgdBREREJDeciSIiIiKqBgZRRERERNXAIIqIiIioGhhEEREREVUDgygiIiKiamAQRURERFQNDKKIiIiIqoFBFBEREVE1MIgiIiIiqgYGUURERETVwCCKiIiIqBoYRBERERFVw/8D1/T6WzD973wAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Running benchmark with complex circuit:\n",
      "Average execution time per iteration: 0.0010 seconds\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvT0lEQVR4nOydeXRT5dbGnwxN0rmFzqW0pZQZWkCoBa+AFIuAUgdEFEFEUD5RsKIXEJkVRUFAUQQVUOGKKHJRsIhcUJnnUcAChULpSOcpaZPz/ZGckzlN2qQ5SfdvrSzoyZuTN2maPNnDswUMwzAgCIIgCIIgbELo7A0QBEEQBEG4IiSiCIIgCIIgGgGJKIIgCIIgiEZAIoogCIIgCKIRkIgiCIIgCIJoBCSiCIIgCIIgGgGJKIIgCIIgiEZAIoogCIIgCKIRkIgiCIIgCIJoBCSiCIJwGebPnw+BQODsbZhl//79EAgE2L9/v7O34lIMHDgQ3bp1c/Y2rEYgEGDq1KnO3gbBA0hEEYSNfPrppxAIBEhKSrK4rqCgADNnzkT37t3h4+MDmUyG9u3bY8KECThw4IDe2g0bNkAgEEAmkyEnJ8foXNZ+yDz33HMQCAQmLzKZzLYH6iSqq6sxf/583ggRS8+p7uW5555z9lZNEhMTY/Q6iI+PxxtvvIHi4mJnb48gXBqxszdAEK7Gpk2bEBMTg2PHjuHq1ato37690Zpjx45h+PDhqKiowFNPPYWXXnoJUqkUWVlZ2L59OzZs2IA//vgD999/v97t5HI53nvvPXz88ceN3p9UKsUXX3xhdFwkEjX6nM1JdXU1FixYAEAtHnWZM2cOZs6c2az7efHFF5GSksL9nJWVhblz52Ly5Mn417/+xR2Pi4tDUlISampqIJFImnWPDZGYmIjXX38dAFBbW4uTJ09ixYoV+OOPP3Ds2DEn744gXBcSUQRhA1lZWTh06BC2bduGF198EZs2bcK8efP01pSUlCAtLQ1isRhnzpxBp06d9K5fvHgxvvvuO3h6ehqdPzExEevWrcOsWbMQERHRqD2KxWKMHTu2UbflO2KxGGJx875tJScnIzk5mfv5xIkTmDt3LpKTk00+z3yM+EVGRurt9YUXXoCPjw8+/PBDZGZmIj4+3om7cw0YhkFtba3Jv1ui5ULpPIKwgU2bNiEwMBDDhw/HE088gU2bNhmtWbNmDXJzc7FixQojAQWo6ynGjBmDPn36GF03e/ZsKJVKvPfeew7ZP6D+MBg0aBCCg4NRUFDAHVcoFOjevTvi4uJQVVXFHf/222/Ru3dveHp6olWrVnjqqadw69Yto/MePXoUw4YNQ2BgILy9vdGjRw+sXLmSu37gwIFGkSVAnS6LiYkBANy4cQPBwcEAgAULFnApqPnz5wMwXRNVX1+PRYsWIS4uDlKpFDExMZg9ezbkcrneupiYGIwYMQIHDhxA3759IZPJ0K5dO3z99dc2PX+WMFUTxaZiz507hwEDBsDLywvt27fHDz/8AAD4448/kJSUBE9PT3Ts2BG///670XlzcnLw/PPPIzQ0FFKpFF27dsVXX33VpL2GhYUBgJEovXz5Mp544gm0atUKMpkM99xzD3bs2KG3hk0/Hzx4EOnp6QgODoa3tzceffRRFBYWGt3Xr7/+igEDBsDX1xd+fn7o06cPNm/ebLTu77//xqBBg+Dl5YXIyEgsXbpU73r2+f3++++xYMECREZGwtfXF0888QTKysogl8sxffp0hISEwMfHBxMmTDB6Haxfvx4PPPAAQkJCIJVK0aVLF3z22WdGe2FfL7t378Y999wDT09PfP7552afz8WLF0MoFDYpiky4HiSiCMIGNm3ahMceewwSiQRjxoxBZmYmjh8/rrfm559/hqenJx577DGbzx8bG4tx48Zh3bp1uHPnTqP3WVRUZHQpLy8HoBZxX331FWpra/HSSy9xt5k3bx4uXryI9evXw9vbGwDwzjvvYNy4cYiPj8fy5csxffp07N27F/fffz9KS0u52+7Zswf3338//v77b0ybNg3Lli3DoEGD8Msvv9i07+DgYO4D7dFHH8U333yDb775xuJz+cILL2Du3Lno1asXPvroIwwYMABLlizBU089ZbT26tWreOKJJzBkyBAsW7YMgYGBeO6553Dx4kWb9mkrJSUlGDFiBJKSkrB06VJIpVI89dRT2LJlC5566ikMGzYM7733HqqqqvDEE0+goqKCu21+fj7uvfde/P7775g6dSpWrlyJ9u3bY+LEiVixYoVV919XV8e9Dm7fvo2ff/4Zy5cvx/3334/Y2Fhu3cWLF3Hvvffi0qVLmDlzJpYtWwZvb2+kpaXhp59+MjrvK6+8grNnz2LevHmYMmUKfv75Z6OC6w0bNmD48OEoLi7GrFmz8N577yExMREZGRlGz9HQoUORkJCAZcuWoVOnTvj3v/+NX3/91eh+lyxZgt27d2PmzJl4/vnnsW3bNrz00kt4/vnn8c8//2D+/Pl47LHHsGHDBrz//vt6t/3ss88QHR2N2bNnY9myZYiKisL//d//YfXq1Ub3c+XKFYwZMwZDhgzBypUrkZiYaPL5nTNnDubOnYvPP/8cr7zyitnfA+GGMARBWMWJEycYAMyePXsYhmEYlUrFtGnThpk2bZreusDAQCYxMdHo9uXl5UxhYSF3qays5K5bv349A4A5fvw4c+3aNUYsFjOvvvoqd/2AAQOYrl27NrjH8ePHMwBMXlJTU/XWfv755wwA5ttvv2WOHDnCiEQiZvr06dz1N27cYEQiEfPOO+/o3e78+fOMWCzmjtfX1zOxsbFMdHQ0U1JSordWpVLpPYYBAwaY3HN0dDT3c2FhIQOAmTdvntHaefPmMbpvW2fOnGEAMC+88ILeuhkzZjAAmP/973/csejoaAYA8+eff3LHCgoKGKlUyrz++utG92WO48ePMwCY9evXG123b98+BgCzb98+7tiAAQMYAMzmzZu5Y5cvX2YAMEKhkDly5Ah3fPfu3UbnnjhxIhMeHs4UFRXp3ddTTz3F+Pv7M9XV1Rb3yz5uw0v//v2Nzjl48GCme/fuTG1tLXdMpVIx/fr1Y+Lj47lj7Os1JSVF73f82muvMSKRiCktLWUYhmFKS0sZX19fJikpiampqdG7L8PXBgDm66+/5o7J5XImLCyMefzxx7lj7PPbrVs3RqFQcMfHjBnDCAQC5qGHHtK7j+TkZL3XFsMwJp+v1NRUpl27diaft4yMDKP1AJiXX36ZYRiGef311xmhUMhs2LDBaB3h/lAkiiCsZNOmTQgNDcWgQYMAqCM6o0ePxnfffQelUsmtKy8vh4+Pj9Htn332WQQHB3OXf//73ybvp127dnj22Wexdu1a5Obm2rxPmUyGPXv2GF0MU4STJ09GamoqXnnlFTz77LOIi4vDu+++y12/bds2qFQqPPnkk3oRrbCwMMTHx2Pfvn0AgNOnTyMrKwvTp09HQECA3n042o5g165dAID09HS942wR9c6dO/WOd+nSRa8YPDg4GB07dsT169cduk8fHx+9yFjHjh0REBCAzp0763V5sv9n98MwDH788Uc8/PDDYBhG7/eQmpqKsrIynDp1qsH7T0pK4l4Hv/zyC9555x1cvHgRjzzyCGpqagAAxcXF+N///ocnn3wSFRUV3P3cvXsXqampyMzMNOocnTx5st7v+F//+heUSiVu3rwJQB2hrKiowMyZM41qxQxfGz4+Pnp1WxKJBH379jX5uxk3bhw8PDz0Hh/DMHj++eeNHvetW7dQX1/PHdOtaSorK0NRUREGDBiA69evo6ysTO/2sbGxSE1NNfGMqn83bGTw22+/xfjx402uI9wbKiwnCCtQKpX47rvvMGjQIGRlZXHHk5KSsGzZMuzduxcPPvggAMDX1xeVlZVG51i4cCGX6hgyZIjF+5szZw6++eYbvPfee3p1RdYgEon0usks8eWXXyIuLg6ZmZk4dOiQ3gdMZmYmGIYxW3TMfohdu3YNAJzi83Pz5k0IhUKjDsmwsDAEBARwH+Ysbdu2NTpHYGAgSkpKHLrPNm3aGIkGf39/REVFGR0DwO2nsLAQpaWlWLt2LdauXWvy3Lp1beYICgrSe00MHz4cHTt2xBNPPIEvvvgCr7zyCq5evQqGYfD222/j7bffNntfkZGR3M+Gz2dgYKDe/m15bZh6jgIDA3Hu3DmjtYb3yz5vpp5PlUqFsrIytG7dGgBw8OBBzJs3D4cPH0Z1dbXe+rKyMu5cAPRSnYZ8/fXXqKysxGeffYYxY8Y0+PgI94REFEFYwf/+9z/k5ubiu+++w3fffWd0/aZNmzgR1alTJ5w9exZ1dXV635Z79Ohh9f21a9cOY8eOxdq1ax3a0r9//36u8Pb8+fN6XWgqlQoCgQC//vqrSXsEU9E2SwgEAjAMY3RcN4rXWKyNeJmzeTC1L3ti7n4b2o9KpQIAjB071mykw5bXlS6DBw8GAPz555945ZVXuPuaMWOG2eiLoVi15/Npy7ka+3xeu3YNgwcPRqdOnbB8+XJERUVBIpFg165d+Oijj7jngMVSJ17//v1x5swZfPLJJ3jyySfRqlUrs2sJ94VEFEFYwaZNmxASEmKy+HTbtm346aefsGbNGnh6emLEiBE4cuQIfvrpJzz55JONvs85c+bg22+/NSqMtRe5ubl45ZVX8OCDD0IikXAfntHR0QDUvkcMwyA2NhYdOnQwe564uDgAwIULFyxGwAIDA02mZgyjRbakAKOjo6FSqZCZmYnOnTtzx/Pz81FaWso9FlclODgYvr6+UCqVVkcXrYVNcbFR03bt2gFQRxjtdV+6rw1TfmrNzc8//wy5XI4dO3boRbPY1LQttG/fHkuXLsXAgQMxdOhQ7N27F76+vvbcLuECUE0UQTRATU0Ntm3bhhEjRuCJJ54wukydOhUVFRVcG/iUKVMQGhqK1157Df/884/R+az9lh4XF4exY8fi888/R15enl0fEwBMmjQJKpUKX375JdauXQuxWIyJEydy+3vssccgEomwYMECoz0zDIO7d+8CAHr16oXY2FisWLFCr2OPXaf7eC5fvqzXAn/27FkcPHhQ7zZeXl4AYHQuUwwbNgwAjLrUli9fDkCdtnJlRCIRHn/8cfz444+4cOGC0fWm7ASs5eeffwYAJCQkAABCQkIwcOBAfP755yZr8RpzXw8++CB8fX2xZMkS1NbW6l3n6OifKdhIle59l5WVYf369Y06X48ePbBr1y5cunQJDz/8MFdfRrQcKBJFEA2wY8cOVFRU4JFHHjF5/b333ovg4GBs2rQJo0ePRqtWrfDTTz/h4YcfRkJCAp566in06dMHHh4euHXrFrZu3QrAdH2OIW+99Ra++eYbXLlyBV27drVqv/X19fj2229NXvfoo4/C29sb69evx86dO7Fhwwa0adMGAPDxxx9j7Nix+Oyzz/B///d/iIuLw+LFizFr1izcuHEDaWlp8PX1RVZWFn766SdMnjwZM2bMgFAoxGeffYaHH34YiYmJmDBhAsLDw3H58mVcvHgRu3fvBgA8//zzWL58OVJTUzFx4kQUFBRgzZo16Nq1K2e/AKhTKF26dMGWLVvQoUMHtGrVCt26dTNZV5OQkIDx48dj7dq1KC0txYABA3Ds2DFs3LgRaWlpXBOAK/Pee+9h3759SEpKwqRJk9ClSxcUFxfj1KlT+P33360a3ZKTk8O9JhQKBc6ePYvPP/8cQUFBei35q1evxn333Yfu3btj0qRJaNeuHfLz83H48GHcvn0bZ8+etWnvfn5++Oijj/DCCy+gT58+ePrppxEYGIizZ8+iuroaGzdutO3JaCJs1PXhhx/Giy++iMrKSqxbtw4hISGNauIA1H////3vfzFs2DA88cQT2L59u14an3BzmrcZkCBcj4cffpiRyWRMVVWV2TXPPfcc4+Hhodcynpuby7zxxhtMly5dGE9PT0YqlTLt2rVjxo0bp9dmzzD6FgeGsLYFTbU4AMBkZWUxt27dYvz9/ZmHH37Y6PaPPvoo4+3tzVy/fp079uOPPzL33Xcf4+3tzXh7ezOdOnViXn75ZebKlSt6tz1w4AAzZMgQxtfXl/H29mZ69OjBfPzxx3prvv32W6Zdu3aMRCJhEhMTmd27dxtZHDAMwxw6dIjp3bs3I5FI9OwODC0OGIZh6urqmAULFjCxsbGMh4cHExUVxcyaNUuvTZ9h1C3rw4cPN3rM5qwXzNEYiwNTvztz+4FO+zxLfn4+8/LLLzNRUVGMh4cHExYWxgwePJhZu3Ztg/s1tDgQCoVMSEgIM2bMGObq1atG669du8aMGzeOCQsLYzw8PJjIyEhmxIgRzA8//MCtMfd6NfX4GYZhduzYwfTr14/x9PRk/Pz8mL59+zL/+c9/GnyODF8b7Pm3bt2qt87cftjXS2Fhod5eevTowchkMiYmJoZ5//33ma+++or7+9B93kz9fhjG9O/ov//9LyMWi5nRo0czSqXS5O0I90PAME6IqRIEQRAEQbg4VBNFEARBEATRCEhEEQRBEARBNAISUQRBEARBEI2ARBRBEARBEEQjIBFFEARBEATRCEhEEQRBEARBNAIy23QgKpUKd+7cga+vr8On2RMEQRAEYR8YhkFFRQUiIiIgFJqPN5GIciB37twxmipOEARBEIRrcOvWLW6qgylIRDkQdhjlrVu34Ofn5+TdEARBEARhDeXl5YiKimpwqDSJKAfCpvD8/PxIRBEEQRCEi9FQKQ4VlhMEQRAEQTQCElEEQRAEQRCNgEQUQRAEQRBEI6CaKIIgCCtQKpWoq6tz9jYIgrADHh4eEIlETT4PiSiCIAgLMAyDvLw8lJaWOnsrBEHYkYCAAISFhTXJx5FEFEEQhAVYARUSEgIvLy8yziUIF4dhGFRXV6OgoAAAEB4e3uhzkYgiCIIwg1Kp5ARU69atnb0dgiDshKenJwCgoKAAISEhjU7tUWE5QRCEGdgaKC8vLyfvhCAIe8P+XTel1pFEFEEQRANQCo8g3A97/F2TiCIIgiAIgmgEJKIIgiAIXjFw4EBMnz7dqXu4ceMGBAIBzpw549R9tFTmz5+PxMREZ2+jQUhEEQRBuCHPPfccBAKB0WXo0KHO3hrH/v37IRAIjOwjtm3bhkWLFjnsfufPn2/yudG9REVFITc3F926dXPYPviA4e9gw4YNCAgIaNY9CAQCbN++Xe/YjBkzsHfv3mbdR2Og7jyCIFyKGoUSnpKmm+S1BIYOHYr169frHZNKpU7ajfW0atXKoeefMWMGXnrpJe7nPn36YPLkyZg0aRJ3TCQSISwszKH7aE4UCgUkEkmz3Z9SqYRAIIBQ2LhYjY+PD3x8fOy8K/tDkSiCIFyG7adz0G3+bvx89o6zt+ISSKVShIWF6V0CAwMBqCMQEokEf/31F7d+6dKlCAkJQX5+PgDg1q1bePLJJxEQEIBWrVph5MiRuHHjht59fPXVV+jatSukUinCw8MxdepUAKbTYaWlpRAIBNi/fz9u3LiBQYMGAQACAwMhEAjw3HPPATBO55WUlGDcuHEIDAyEl5cXHnroIWRmZnLXs9GT3bt3o3PnzvDx8cHQoUORm5tr8nnx8fHRe05EIhF8fX31jhnun43Y7N69Gz179oSnpyceeOABFBQU4Ndff0Xnzp3h5+eHp59+GtXV1dx9qVQqLFmyBLGxsfD09ERCQgJ++OEHi7+3mJgYLFq0CGPGjIG3tzciIyOxevVqvTWlpaV44YUXEBwcDD8/PzzwwAM4e/Ysdz2bDvviiy8QGxsLmUxm8T7ZxzhhwgSUlZVxEbn58+cDAORyOWbMmIHIyEh4e3sjKSkJ+/fvN/od7NixA126dIFUKkV2djaOHz+OIUOGICgoCP7+/hgwYABOnTql91gB4NFHH4VAIOB+NkznqVQqLFy4EG3atIFUKkViYiIyMjK469nf17Zt2zBo0CB4eXkhISEBhw8fbvBxNwUSUQRBuAwnbhZDqWJwPqfMaXtgGAbVinqnXBiGsdvjYIXKs88+i7KyMpw+fRpvv/02vvjiC4SGhqKurg6pqanw9fXFX3/9hYMHD3LiRKFQAAA+++wzvPzyy5g8eTLOnz+PHTt2oH379lbdf1RUFH788UcAwJUrV5Cbm4uVK1eaXPvcc8/hxIkT2LFjBw4fPgyGYTBs2DC91vTq6mp8+OGH+Oabb/Dnn38iOzsbM2bMaOKzZMz8+fPxySef4NChQ5zIXLFiBTZv3oydO3fit99+w8cff8ytX7JkCb7++musWbMGFy9exGuvvYaxY8fijz/+sHg/H3zwARISEnD69GnMnDkT06ZNw549e7jrR40axQm4kydPolevXhg8eDCKi4u5NVevXsWPP/6Ibdu2WVXb1a9fP6xYsQJ+fn7Izc1Fbm4u9xxOnToVhw8fxnfffYdz585h1KhRGDp0qJ6Yra6uxvvvv48vvvgCFy9eREhICCoqKjB+/HgcOHAAR44cQXx8PIYNG4aKigoAwPHjxwEA69evR25uLvezIStXrsSyZcvw4Ycf4ty5c0hNTcUjjzyid/8A8NZbb2HGjBk4c+YMOnTogDFjxqC+vr7Bx95YKJ1HEITLUFmrfjOsV9pPTNhKTZ0SXebudsp9/70wFV4S69+2f/nlF6OUyOzZszF79mwAwOLFi7Fnzx5MnjwZFy5cwPjx4/HII48AALZs2QKVSoUvvviCawVfv349AgICsH//fjz44INYvHgxXn/9dUybNo07f58+fazam0gk4tJ2ISEhZutwMjMzsWPHDhw8eBD9+vUDAGzatAlRUVHYvn07Ro0aBUDt9bNmzRrExcUBUH/oL1y40Kq92MLixYvRv39/AMDEiRMxa9YsXLt2De3atQMAPPHEE9i3bx/+/e9/Qy6X491338Xvv/+O5ORkAEC7du1w4MABfP755xgwYIDZ++nfvz9mzpwJAOjQoQMOHjyIjz76CEOGDMGBAwdw7NgxFBQUcOnZDz/8ENu3b8cPP/yAyZMnA1Cn8L7++msEBwdb9dgkEgn8/f0hEAj0UpnZ2dlYv349srOzERERAUCdEs3IyMD69evx7rvvAlD/Dj799FMkJCRwt33ggQf07mPt2rUICAjAH3/8gREjRnB7Y0ewmOPDDz/Ev//9bzz11FMAgPfffx/79u3DihUr9KJ0M2bMwPDhwwEACxYsQNeuXXH16lV06tTJqufAVkhEEQThMlTK1SJKqVI5eSeuwaBBg/DZZ5/pHdOtN5JIJNi0aRN69OiB6OhofPTRR9x1Z8+exdWrV+Hr66t3+9raWly7dg0FBQW4c+cOBg8e7NDHcOnSJYjFYiQlJXHHWrdujY4dO+LSpUvcMS8vL05AAepRHuxYD3vSo0cP7v+hoaHw8vLiBBR77NixYwDUkaDq6moMGTJE7xwKhQI9e/a0eD+s6NL9ecWKFQDUv5vKykojF/2amhpcu3aN+zk6OtpqAWWJ8+fPQ6lUokOHDnrH5XK53h4kEone8wMA+fn5mDNnDvbv34+CggIolUpUV1cjOzvb6vsvLy/HnTt3OPHK0r9/f70UJqD/+2HHuRQUFJCIIgiCqGAjUSrnRaI8PUT4e2Gq0+7bFry9vRtMrx06dAgAUFxcjOLiYnh7ewMAKisr0bt3b2zatMnoNsHBwQ0WDLPX66Ygm+IM3RAeHh56PwsEArumP03dj0AgMHm/Ko3Ir6ysBADs3LkTkZGReuuaUuBfWVmJ8PBwvZokFt2IHvu7bCqVlZUQiUQ4efKk0XgU3Uinp6enkYHl+PHjcffuXaxcuRLR0dGQSqVITk7mUsL2xvD3A4D7fTgCElEEQbgM2kiU80SUQCCwKaXGZ65du4bXXnsN69atw5YtWzB+/Hj8/vvvEAqF6NWrF7Zs2YKQkBD4+fmZvH1MTAz27t3LFYjrwkZAcnNzuaiLYV0O2y2mVCrN7rFz586or6/H0aNHuXTe3bt3ceXKFXTp0sXmx9yc6BZYW0rdmeLIkSNGP3fu3BkA0KtXL+Tl5UEsFnOF2PZCIpEY/T569uwJpVKJgoIC/Otf/7LpfAcPHsSnn36KYcOGAVA3KxQVFemt8fDwsPga8PPzQ0REBA4ePKj3PB48eBB9+/a1aT/2hgrLCYJwGVgR5cxIlCshl8uRl5end2E/wJRKJcaOHYvU1FRMmDAB69evx7lz57Bs2TIAwDPPPIOgoCCMHDkSf/31F7KysrB//368+uqruH37NgB1kfWyZcuwatUqZGZm4tSpU1xRtaenJ+6991689957uHTpEv744w/MmTNHb3/R0dEQCAT45ZdfUFhYyEVudImPj8fIkSMxadIkHDhwAGfPnsXYsWMRGRmJkSNHOvLpazK+vr6YMWMGXnvtNWzcuBHXrl3jnqONGzdavO3BgwexdOlS/PPPP1i9ejW2bt3K1Z6lpKQgOTkZaWlp+O2333Djxg0cOnQIb731Fk6cONGkPcfExKCyshJ79+5FUVERqqur0aFDBzzzzDMYN24ctm3bhqysLBw7dgxLlizBzp07LZ4vPj4e33zzDS5duoSjR4/imWee4Yb/6t7n3r17kZeXh5KSEpPneeONN/D+++9jy5YtuHLlCmbOnIkzZ87o1eM5AxJRBEG4DGw6z5mRKFciIyMD4eHhepf77rsPAPDOO+/g5s2b+PzzzwGo60fWrl2LOXPm4OzZs/Dy8sKff/6Jtm3b4rHHHkPnzp0xceJE1NbWcpGp8ePHY8WKFfj000/RtWtXjBgxQq9b6quvvkJ9fT169+6N6dOnY/HixXr7i4yMxIIFCzBz5kyEhoZy9giGrF+/Hr1798aIESOQnJwMhmGwa9cuo1QaH1m0aBHefvttLFmyBJ07d8bQoUOxc+dOxMbGWrzd66+/jhMnTqBnz55YvHgxli9fjtRUdRpZIBBg165duP/++zFhwgR06NABTz31FG7evInQ0NAm7bdfv3546aWXMHr0aAQHB2Pp0qUA1L+DcePG4fXXX0fHjh2RlpaG48ePo23bthbP9+WXX6KkpAS9evXCs88+i1dffRUhISF6a5YtW4Y9e/YgKirKbK3Yq6++ivT0dLz++uvo3r07MjIysGPHDsTHxzfp8TYVAeOIpDEBQF0M5+/vj7KyMrPhcIIgrKfDW79CoVTh4YQIfDzGcmGuPaitrUVWVpbVPjsEYQ9iYmIwffp0p4++cXcs/X1b+/lNkSiCIFwCeb0SCqW6QJS68wiC4AMkogiCcAlYjyjAuT5RBEEQLLwQUatXr0ZMTAxkMhmSkpI4jw1zbN26FZ06dYJMJkP37t2xa9cuvesZhsHcuXMRHh4OT09PpKSk6OXpb9y4gYkTJ3I2/HFxcZg3b55ey+X+/fsxcuRIhIeHw9vbG4mJiSZbfQmCaB7YonKAaqII9+bGjRuUynMRnC6itmzZgvT0dMybNw+nTp1CQkICUlNTzZqkHTp0CGPGjMHEiRNx+vRppKWlIS0tDRcuXODWLF26FKtWrcKaNWtw9OhReHt7IzU1FbW1tQCAy5cvQ6VS4fPPP8fFixfx0UcfYc2aNZyLL3s/PXr0wI8//ohz585hwoQJGDduHH755RfHPiEEQZikQjcSRSKKIAge4PTC8qSkJPTp0weffPIJALUpVlRUFF555RXO8l6X0aNHo6qqSk/M3HvvvUhMTMSaNWvAMAwiIiLw+uuvczN/ysrKEBoaig0bNnCW8YZ88MEH+Oyzz3D9+nWzex0+fDhCQ0Px1VdfWfXYqLCcIOzH4Wt3MWad2jvnvvZB+PaFpAZu0XTYwtOYmBijtmyCIFybmpoa3Lhxw3ULyxUKBU6ePImUlBTumFAoREpKitnJy4cPH9ZbDwCpqanc+qysLOTl5emt8ff3R1JSksVpzmVlZXrjEBq7hiAIx6CbzqtvpsJytoW+urq6We6PIIjmg/27bopVhlNtd4uKiqBUKo18LUJDQ3H58mWTt8nLyzO5Pi8vj7uePWZujSFXr17Fxx9/jA8//NDsXr///nscP36c81QxhVwuh1wu534uLy83u5YgCNuolGtHhjRXTZRIJEJAQABXXuDl5WU01oIgCNeCYRhUV1ejoKAAAQEBRqNsbME9Zhc0gZycHAwdOhSjRo3CpEmTTK7Zt28fJkyYgHXr1qFr165mz7VkyRIsWLDAUVsliBZNpZNqotjJ8o4YZksQhPMICAjg/r4bi1NFVFBQEEQiEfLz8/WO5+fnm31gYWFhFtez/+bn53MTnNmfExMT9W53584dDBo0CP369cPatWtN3t8ff/yBhx9+GB999BHGjRtn8fHMmjUL6enp3M/l5eWIioqyeBuCIKyjwkndeQKBAOHh4QgJCXHoAF2CIJoPDw+PJkWgWJwqoiQSCXr37o29e/ciLS0NgLqwfO/evWbt/5OTk7F371699s89e/YgOTkZABAbG4uwsDDs3buXE03l5eU4evQopkyZwt0mJycHgwYNQu/evbF+/XqTE8n379+PESNG4P3338fkyZMbfDxSqbRJk7kJgjCPs32iRCKRXd50CYJwH5yezktPT8f48eNxzz33oG/fvlixYgWqqqowYcIEAMC4ceMQGRmJJUuWAACmTZuGAQMGYNmyZRg+fDi+++47nDhxgoskCQQCbkZTfHw8YmNj8fbbbyMiIoITajk5ORg4cCCio6Px4YcforCwkNsPG8nat28fRowYgWnTpuHxxx/n6qkkEgkVlxOEE9C1OCCfKIIg+IDTRdTo0aNRWFiIuXPnIi8vD4mJicjIyOAKw7Ozs/WiRP369cPmzZsxZ84czJ49G/Hx8di+fTu6devGrXnzzTdRVVWFyZMno7S0FPfddx8yMjK4FsY9e/bg6tWruHr1Ktq0aaO3H9bxYePGjaiursaSJUs4AQcAAwYMwP79+x31dBAEYQZndOcRBEFYwuk+Ue4M+UQRhP14YeMJ/H5JXQ8Z09oL+98Y5OQdEQThrriETxRBEIS16FockGM5QRB8gEQUQRAuAc3OIwiCb5CIIgjCJXCWTxRBEIQ5SEQRBOESUHceQRB8g0QUQRAuga7ZZr2SuvMIgnA+JKIIguA98nolFPVa4USRKIIg+ACJKIIgeE+VXKn3M9VEEQTBB0hEEQTBe3SLygGKRBEEwQ9IRBEEwXsqNB5RIqEAgDoSRT7BBEE4GxJRBEHwHrYzL8DTgztGwSiCIJwNiSiCIHgPm87z99KKKJqfRxCEsyERRRAE72HdynUjUVQXRRCEsyERRRAE72E9ogK8JNwx6tAjCMLZkIgiCIL3VJqoiVIqSUQRBOFcSEQRBMF7KjXdeX6eujVRJKIIgnAuJKIIguA9bHeer0wMscbmgGqiCIJwNiSiCILgPZU6IkrrFUXdeQRBOBcSUQRB8B62sNxH6kGRKIIgeAOJKIIgeA8bifLRi0SRiCIIwrmQiCIIgvewPlG+UjHEIvXbFkWiCIJwNiSiCILgPayI0otEkcUBQRBOhkQUQRC8p6JWbXHgI6XuPIIg+AOJKIIgeE8FdecRBMFDSEQRBMFrFPUqyOvVgsmXuvMIguARJKIIguA1VZp6KADwloqoO48gCN5AIoogCF7DFpV7eoggFgkhFlJ3HkEQ/IBEFEEQvKZCxyMKAEWiCILgDSSiCILgNWxnnq9ULaLEIrYmigrLCYJwLiSiCILgNZzRpmEkinyiCIJwMiSiCILgNbpGmwCoO48gCN5AIoogCF7D1URJqSaKIAh+QSKKIAhew0WipB4AAA+anUcQBE8gEUUQBK+prDVTE0UiiiAIJ0MiiiAIXqM7Nw/QrYmi7jyCIJwLiSiCIHhNhbnuPIpEEQThZEhEEQTBayprDbvzqCaKIAh+wAsRtXr1asTExEAmkyEpKQnHjh2zuH7r1q3o1KkTZDIZunfvjl27duldzzAM5s6di/DwcHh6eiIlJQWZmZnc9Tdu3MDEiRMRGxsLT09PxMXFYd68eVAoFHrnOXfuHP71r39BJpMhKioKS5cutd+DJgjCKrSF5eQTRRAEv3C6iNqyZQvS09Mxb948nDp1CgkJCUhNTUVBQYHJ9YcOHcKYMWMwceJEnD59GmlpaUhLS8OFCxe4NUuXLsWqVauwZs0aHD16FN7e3khNTUVtbS0A4PLly1CpVPj8889x8eJFfPTRR1izZg1mz57NnaO8vBwPPvggoqOjcfLkSXzwwQeYP38+1q5d69gnhCAIPQzNNskniiAI3sA4mb59+zIvv/wy97NSqWQiIiKYJUuWmFz/5JNPMsOHD9c7lpSUxLz44osMwzCMSqViwsLCmA8++IC7vrS0lJFKpcx//vMfs/tYunQpExsby/386aefMoGBgYxcLueO/fvf/2Y6duxo9WMrKytjADBlZWVW34YgCH0GfbCPif73L8zR63cZhmGYGd+fYaL//Qvz6b6rTt4ZQRDuirWf306NRCkUCpw8eRIpKSncMaFQiJSUFBw+fNjkbQ4fPqy3HgBSU1O59VlZWcjLy9Nb4+/vj6SkJLPnBICysjK0atVK737uv/9+SCQSvfu5cuUKSkpKbHugBEE0mnIDs02anUcQBF9wqogqKiqCUqlEaGio3vHQ0FDk5eWZvE1eXp7F9ey/tpzz6tWr+Pjjj/Hiiy82eD+692GIXC5HeXm53oUgiKZRKdcMIKbuPIIgeIbTa6KcTU5ODoYOHYpRo0Zh0qRJTTrXkiVL4O/vz12ioqLstEuCaJnUKVWorVNHnHypO48gCJ7hVBEVFBQEkUiE/Px8veP5+fkICwszeZuwsDCL69l/rTnnnTt3MGjQIPTr18+oYNzc/ejehyGzZs1CWVkZd7l165bJdQRBWEeVpqgcALxpdh5BEDzDqSJKIpGgd+/e2Lt3L3dMpVJh7969SE5ONnmb5ORkvfUAsGfPHm59bGwswsLC9NaUl5fj6NGjeufMycnBwIED0bt3b6xfvx5Cof5TkZycjD///BN1dXV699OxY0cEBgaa3JtUKoWfn5/ehSCIxsMOH5Z5CLmZedSdRxAEX3B6Oi89PR3r1q3Dxo0bcenSJUyZMgVVVVWYMGECAGDcuHGYNWsWt37atGnIyMjAsmXLcPnyZcyfPx8nTpzA1KlTAQACgQDTp0/H4sWLsWPHDpw/fx7jxo1DREQE0tLSAGgFVNu2bfHhhx+isLAQeXl5erVOTz/9NCQSCSZOnIiLFy9iy5YtWLlyJdLT05vvySGIFo7h8GGAfKIIguAPYmdvYPTo0SgsLMTcuXORl5eHxMREZGRkcEXc2dnZelGifv36YfPmzZgzZw5mz56N+Ph4bN++Hd26dePWvPnmm6iqqsLkyZNRWlqK++67DxkZGZDJZADUEaWrV6/i6tWraNOmjd5+GEb9xuzv74/ffvsNL7/8Mnr37o2goCDMnTsXkydPdvRTQhCEhgqD4cMAzc4jCII/CBhWNRB2p7y8HP7+/igrK6PUHkE0gv9dzsfzG06ge6Q/fn7lPgDAyt8z8dHv/+CZpLZ459HuTt4hQRDuiLWf305P5xEEQZjDZCRKRDVRBEHwAxJRBEHwFsO5eQB15xEEwR9IRBEEwVsqWbdykzVRJKIIgnAuJKIIguAt3PBhikQRBMFDSEQRBMFbKixGoqg7jyAI50IiiiAI3sKJKD2fKPXbFvlEEQThbEhEEQTBWwyHDwNUE0UQBH8gEUUQBG/haqJkVBNFEAT/IBFFEARv4brzpOQTRRAE/yARRRAEb6mw6BNFheUEQTgXElEEQfAWy915FIkiCMK5kIgiCIK3sOk8X1PdeSSiCIJwMiSiCILgJfVKFWrqlACoO48gCH5CIoogCF5SJVdy//c2VRNFPlEEQTgZElEEQfCSKoU6lechEkAi1r5VUSSKIAi+QCKKIAheUqdUd99JRPpvU9SdRxAEXyARRRAEL2FFlIdY/22KfKIIguALJKIIguAlinq1SDKORFF3HkEQ/IBEFEEQvETBRqIMRBTVRBEEwRdIRBEEwUu4miixuZooElEEQTgXElEEQfCSuno2EiXQO06RKIIg+AKJKIIgeImioUiUkrrzCIJwLiSiCILgJYp6czVR6p8pEkUQhLMhEUUQBC+p0ziSG4ookYhqogiC4AckogiC4CXmzDapJoogCL5AIoogCF7SYE2UigHDkJAiCMJ5kIgiCIKXKBrozgMACkYRBOFMSEQRBMFL6syYbYp0RBTNzyMIwpmQiCIIgpeYr4nS/kx1UQRBOBOxszdA2M7HezORX1GLyf+KQ9vWXs7eDkE4BLY7z1xNFEAdegRBOBeKRLkgP53OwbdHspFXXuvsrRCEw5Cb9YnSiiilkkQUQRDOg0SUC8J+M2cLbwnCHTFXEyUUCiDQ6CiKRBEE4UxIRLkgnIhSKp28E4JwHNzsPLHA6DryiiIIgg+QiHJB2EJbikQR7gwbiZKKjN+mtF5R9DdAEITzIBHlgrCRKDmJKMKNUZhJ5wE0P48gCH5AIsoF8aBIFNECUNRrZueJLUWiSEQRBOE8nC6iVq9ejZiYGMhkMiQlJeHYsWMW12/duhWdOnWCTCZD9+7dsWvXLr3rGYbB3LlzER4eDk9PT6SkpCAzM1NvzTvvvIN+/frBy8sLAQEBJu/n+PHjGDx4MAICAhAYGIjU1FScPXu2SY/VXmhrokhEEe6LucJygGqiCILgB04VUVu2bEF6ejrmzZuHU6dOISEhAampqSgoKDC5/tChQxgzZgwmTpyI06dPIy0tDWlpabhw4QK3ZunSpVi1ahXWrFmDo0ePwtvbG6mpqait1doBKBQKjBo1ClOmTDF5P5WVlRg6dCjatm2Lo0eP4sCBA/D19UVqairq6urs+yQ0AlZE1VEkinBj6szMzgN0IlFkcUAQhBOxyWxTpVLhjz/+wF9//YWbN2+iuroawcHB6NmzJ1JSUhAVFWXTnS9fvhyTJk3ChAkTAABr1qzBzp078dVXX2HmzJlG61euXImhQ4fijTfeAAAsWrQIe/bswSeffII1a9aAYRisWLECc+bMwciRIwEAX3/9NUJDQ7F9+3Y89dRTAIAFCxYAADZs2GByX5cvX0ZxcTEWLlzIPaZ58+ahR48euHnzJtq3b2/T47Q3bKEtRaIId4ZNV0tE1J1HEAQ/sSoSVVNTg8WLFyMqKgrDhg3Dr7/+itLSUohEIly9ehXz5s1DbGwshg0bhiNHjlh1xwqFAidPnkRKSop2M0IhUlJScPjwYZO3OXz4sN56AEhNTeXWZ2VlIS8vT2+Nv78/kpKSzJ7TFB07dkTr1q3x5ZdfQqFQoKamBl9++SU6d+6MmJgYq8/jKMgnimgJWCosF4moO48gCOdjVSSqQ4cOSE5Oxrp16zBkyBB4eHgYrbl58yY2b96Mp556Cm+99RYmTZpk8ZxFRUVQKpUIDQ3VOx4aGorLly+bvE1eXp7J9Xl5edz17DFza6zB19cX+/fvR1paGhYtWgQAiI+Px+7duyEWm3/K5HI55HI593N5ebnV92kLJKKIloDlmijqziMIwvlYFYn67bff8P3332PYsGEmBRQAREdHY9asWcjMzMQDDzxg1002NzU1NZg4cSL69++PI0eO4ODBg+jWrRuGDx+Ompoas7dbsmQJ/P39uYut6U1rYT9U5JTOI9wYc7PzAOrOIwiCH1glojp37mz1CT08PBAXF9fguqCgIIhEIuTn5+sdz8/PR1hYmMnbhIWFWVzP/mvLOU2xefNm3LhxA+vXr0efPn1w7733YvPmzcjKysJ///tfs7ebNWsWysrKuMutW7esvk9boEgU0RLQ1kRRdx5BEPzE5u68jIwMHDhwgPt59erVSExMxNNPP42SkhKrzyORSNC7d2/s3buXO6ZSqbB3714kJyebvE1ycrLeegDYs2cPtz42NhZhYWF6a8rLy3H06FGz5zRFdXU1hEIhBAJtQSv7s8pCDYZUKoWfn5/exRGwHyp1FIki3BhL6TyKRBEEwQdsFlFvvPEGV+tz/vx5vP766xg2bBiysrKQnp5u07nS09Oxbt06bNy4EZcuXcKUKVNQVVXFdeuNGzcOs2bN4tZPmzYNGRkZWLZsGS5fvoz58+fjxIkTmDp1KgBAIBBg+vTpWLx4MXbs2IHz589j3LhxiIiIQFpaGnee7OxsnDlzBtnZ2VAqlThz5gzOnDmDyspKAMCQIUNQUlKCl19+GZcuXcLFixcxYcIEiMViDBo0yNanzO5QJIpoCWgLyy1159HfAEEQzsMmiwNA3QHXpUsXAMCPP/6IESNG4N1338WpU6cwbNgwm841evRoFBYWYu7cucjLy0NiYiIyMjK4wvDs7GwIhVqd169fP2zevBlz5szB7NmzER8fj+3bt6Nbt27cmjfffBNVVVWYPHkySktLcd999yEjIwMymYxbM3fuXGzcuJH7uWfPngCAffv2YeDAgejUqRN+/vlnLFiwAMnJyRAKhejZsycyMjIQHh5u61Nmd6QkoogWAPlEEQTBd2wWURKJBNXV1QCA33//HePGjQMAtGrVqlHdaFOnTuUiSYbs37/f6NioUaMwatQos+cTCARYuHAhFi5caHbNhg0bzHpEsQwZMgRDhgyxuMZZkGM50RJgvyRQdx5BEHzFZhF13333IT09Hf3798exY8ewZcsWAMA///yDNm3a2H2DhDE0O49oCVB3HkEQfMfmmqhPPvkEYrEYP/zwAz777DNERkYCAH799VcMHTrU7hskjGELy+Ukogg3ps5SJEpE3XkEQTgfmyNRbdu2xS+//GJ0/KOPPrLLhoiG4WbnUTqPcGMsFZZTJIogCD5gVSSqqqrKppPaup6wDerOI9wdhmE4EWUqnUfdeQRB8AGrRFT79u3x3nvvITc31+wahmGwZ88ePPTQQ1i1apXdNkgY44qF5QzDYPvpHHx//BZO3ixBWU2ds7dE8BiligGjCTKZMtukSBRBEHzAqnTe/v37MXv2bMyfPx8JCQm45557EBERAZlMhpKSEvz99984fPgwxGIxZs2ahRdffNHR+27RSF2wsPzEzRJM33JG71iwrxSJUQH48IkE+HuZHidEtEzqdKwLqDuPIAi+YpWI6tixI3788UdkZ2dj69at+Ouvv3Do0CHU1NQgKCgIPXv2xLp16/DQQw9BJBI5es8tHldM5xVWqAcze0tE8JV5IK+8FoUVcuz5Ox9/XS3EiB4RTt4hwSd0o6wWHcvJJ4ogCCdiU2F527Zt8frrr+P111931H4IK3BFiwN2r4ltA7DphXtRUVuHiRtP4FhWMWoUSifvjuAbuq9ty47lJKIIgnAeNlscEM7HFWuiDIfJ+so8EOCpTuGRVQNhCOdWLtKfYclCNVEEQfABElEuiCum8+QmOq2kHurUrys9DqJ5qLNgbwDo+kTRa4cgCOdBIsoFYaM5LhmJEmtr5lzxcRDNAyeiTNgbABSJIgiCH5CIckFccQCxYToPAKQeGuf1Otd5HETzIDfxetGFuvMIguADJKJcEDYlpmKAeheJ4mgjUdqXnDYSRYXlhD6sxYGpzjyAIlEEQfCDRomov/76C2PHjkVycjJycnIAAN988w0OHDhg180RptH9YHGVVBgrlKRiikQRDVNnwa0coO48giD4gc0i6scff0Rqaio8PT1x+vRpyOVq/5+ysjK8++67dt8gYYzuB4urpPTYyIJeYTnVRBFm0A4fNl1YTj5RBEHwAZtF1OLFi7FmzRqsW7cOHh5al+n+/fvj1KlTdt0cYRqxUAC269tVBIipmihWUFEkijDEVDenLjQ7jyAIPmCziLpy5Qruv/9+o+P+/v4oLS21x56IBhAIBNp6IheJRMlN1ERJNZ16riIEieZDG4kyVxOlPk41UQRBOBObRVRYWBiuXr1qdPzAgQNo166dXTZFNIyreUWZLCxnI1H1VFhO6NNQYbnWJ4pEFEEQzsNmETVp0iRMmzYNR48ehUAgwJ07d7Bp0ybMmDEDU6ZMccQeCRNIXcy1XKE0YXHgYkKQaD7qTLxedKHuPIIg+IBNs/MAYObMmVCpVBg8eDCqq6tx//33QyqVYsaMGXjllVccsUfCBK42P0+hiTaZjkS5xmMgmg9TkUtdqDuPIAg+YLOIEggEeOutt/DGG2/g6tWrqKysRJcuXeDj4+OI/RFmcId0HlsTRSKKMETRwNgXikQRBMEHbBZRLBKJBF26dLHnXggbcLXCcvZDUUqRKMIKtLPzqDuPIAj+YrOIqq2txccff4x9+/ahoKAAKoM3MbI5aB4krlYTZWrsi4tF04jmo+GaKE13HvlEEQThRGwWURMnTsRvv/2GJ554An379oVAYDrcTjgWd0jnUXceYQ5ra6IonUcQhDOxWUT98ssv2LVrF/r37++I/RBWInExt2/TPlGuJQSJ5kNBs/MIgnABbLY4iIyMhK+vryP2QtiAy0WiTKRnqCaKMEeDNVEiqokiCML52Cyili1bhn//+9+4efOmI/ZDWInLFZazDtSmHMtd5DEQzQfnWC6m2XkEQfAXm9N599xzD2pra9GuXTt4eXnpzc8DgOLiYrttjjAPFZYT7gwbiZI22J1HIoogCOdhs4gaM2YMcnJy8O677yI0NJQKy52Eq6bzpCZqoqiwnDBE0UA6j2bnEQTBB2wWUYcOHcLhw4eRkJDgiP0QVuJqheWWuvNUDFCvVEFs5gOTaHko6jWF5eRYThAEj7H5U6tTp06oqalxxF4IG3C5SJQFx3KAissJfRoqLKfuPIIg+IDNIuq9997D66+/jv379+Pu3bsoLy/XuxDNgyuJKJWK4T7sTHXnAa7xOIjmgzPbbDASRa8bgiCch83pvKFDhwIABg8erHecYRgIBAIolVTf0hy4UneebspR90NRJBRALBSgXsVQJIrQQ9uIQLPzCILgLzaLqH379jliH4SNuFJ3nq5AMowsSMRC1CuULiEGieajocJyrU8UiSiCIJyHzSJqwIABjtgHYSNsJKrOBUSUrkAynIUmEQtRrVBShx6hR8M1UTQ7jyAI52OViDp37hy6desGoVCIc+fOWVzbo0cPu2yMsIwruX3rupUbWmJIXehxEM1HnUYcNVwTRSKKIAjnYVVheWJiIoqKirj/9+zZE4mJiUaXnj172ryB1atXIyYmBjKZDElJSTh27JjF9Vu3bkWnTp0gk8nQvXt37Nq1S+96hmEwd+5chIeHw9PTEykpKcjMzNRb884776Bfv37w8vJCQECA2fvasGEDevToAZlMhpCQELz88ss2Pz5H4UqF5ZaGybqSGCSaD1PmrLpQTRRBEHzAKhGVlZWF4OBg7v/Xr19HVlaW0eX69es23fmWLVuQnp6OefPm4dSpU0hISEBqaioKCgpMrj906BDGjBmDiRMn4vTp00hLS0NaWhouXLjArVm6dClWrVqFNWvW4OjRo/D29kZqaipqa2u5NQqFAqNGjcKUKVPM7m358uV46623MHPmTFy8eBG///47UlNTbXp8jsRdRBSNfiFM0eDsPOrOIwiCB1iVzouOjoZIJEJubi6io6PtdufLly/HpEmTMGHCBADAmjVrsHPnTnz11VeYOXOm0fqVK1di6NCheOONNwAAixYtwp49e/DJJ59gzZo1YBgGK1aswJw5czBy5EgAwNdff43Q0FBs374dTz31FABgwYIFANSRJlOUlJRgzpw5+Pnnn/W6EPmUqvRwIbNNS1EF9hjVRBG6aAvLqTuPIAj+YrVPFMPY981KoVDg5MmTSElJ0W5GKERKSgoOHz5s8jaHDx/WWw8Aqamp3PqsrCzk5eXprfH390dSUpLZc5piz549UKlUyMnJQefOndGmTRs8+eSTuHXrli0P0aG40tw5hcb2wmQkysN1HgfRfDTsE6U+TjVRBEE4E6fN2SgqKoJSqURoaKje8dDQUOTl5Zm8TV5ensX17L+2nNMU169fh0qlwrvvvosVK1bghx9+QHFxMYYMGQKFQmH2dnK5vNnMR13JJ0puqSZKRDVRhDHs69psd56IIlEEQTgfmywOvvjiC/j4+Fhc8+qrrzZpQ3xApVKhrq4Oq1atwoMPPggA+M9//oOwsDDs27fPbG3UkiVLuFSho2EFiStZHJhK50k9qCaKMIa68wiCcAVsElFr1qyBSCQye71AILBaRAUFBUEkEiE/P1/veH5+PsLCwkzeJiwszOJ69t/8/HyEh4frrUlMTLRqXwC423bp0oU7FhwcjKCgIGRnZ5u93axZs5Cens79XF5ejqioKKvv1xZcqavNYnceRaIIE9Q1FInSEVHstASCIIjmxqZ03okTJ0x25TWmO08ikaB3797Yu3cvd0ylUmHv3r1ITk42eZvk5GS99YC6foldHxsbi7CwML015eXlOHr0qNlzmqJ///4AgCtXrnDHiouLUVRUZLGwXiqVws/PT+/iKCSuVFhuob5FWxNFheWEFkuvGUAbiQIoGkUQhPOwOhLliG966enpGD9+PO655x707dsXK1asQFVVFdetN27cOERGRmLJkiUAgGnTpmHAgAFYtmwZhg8fju+++w4nTpzA2rVruT1Onz4dixcvRnx8PGJjY/H2228jIiICaWlp3P1mZ2ejuLgY2dnZUCqVOHPmDACgffv28PHxQYcOHTBy5EhMmzYNa9euhZ+fH2bNmoVOnTph0KBBdn8eGoOHCxWWsylHqSkR5UJikGgeGIaxujsPUNdFic0HyAmCIByG1SLK3t15ADB69GgUFhZi7ty5yMvLQ2JiIjIyMrjC8OzsbAiF2g/efv36YfPmzZgzZw5mz56N+Ph4bN++Hd26dePWvPnmm6iqqsLkyZNRWlqK++67DxkZGZDJZNyauXPnYuPGjdzPrEnovn37MHDgQABqa4TXXnsNw4cPh1AoxIABA5CRkQEPDw+7Pw+NwZUKyy3XRGnSeXX8fxxE86BO0an/b85sU6zzvkCRKIIgnIXVImrevHkNFpU3hqlTp2Lq1Kkmr9u/f7/RsVGjRmHUqFFmzycQCLBw4UIsXLjQ7JoNGzaY9Yhi8fPzw5dffokvv/zS4jpnIXWhAcTW1ES5wuMgmoc6nXl4DdVEAdShRxCE87BJRBH8gevOc4FIlCWLA7Y7jwrLCRZdQU01UQRB8Bmn+UQRTUPiSpEopfl0niulJYnmQfe1oCuWdBEKBWDLNOtp9AtBEE6CRJSLwoqPOiUDFc+/iVuenUdjXwh96nREt6WGFvKKIgjC2ZCIclE8dAQJ36NRFmuiXMjvimge6hrozGPh5ucpSUQRBOEcSES5KLqpMVcWUVISUYQBDc3NY6H5eQRBOBubRVR+fj6effZZREREQCwWQyQS6V2I5kFPRPFcgLAiT2qqJkpMY18IfeQNuJWzcJEoElEEQTgJm8a+AMBzzz2H7OxsvP322wgPD6dxC05CKBTAQyRAnZLh/fw8SucRtsBaHDQkoqgmiiAIZ2OziDpw4AD++usvm2bREY5BIhKiTqnkfRTHmnQejX0hWKxN52kjUfx+/RME4b7YnM6LiopyiHs5YTsSFxn9IrdkcUCRKMIA7fBhy1FuikQRBOFsbBZRK1aswMyZM3Hjxg0HbIewBTbdwXcBoo1EGdfMSV1ECBLNh9zaSJSIaqIIgnAuNqfzRo8ejerqasTFxcHLy8tollxxcbHdNkdYxlUMNxUWIgsUiSIMqbOysJy68wiCcDY2i6gVK1Y4YBtEY3CVdJ7lmijqziP0sbawnHyiCIJwNjaLqPHjxztiH0QjcJWRKZzFgcXCcn4/BqL5qLNQQ6cL1UQRBOFsbBZRAKBUKrF9+3ZcunQJANC1a1c88sgj5BPVzLACxJUtDmjsC2GIpdeLLtSdRxCEs7FZRF29ehXDhg1DTk4OOnbsCABYsmQJoqKisHPnTsTFxdl9k4RpXC6dZ0Jku8pjIJoPhZVjXygSRRCEs7G5O+/VV19FXFwcbt26hVOnTuHUqVPIzs5GbGwsXn31VUfskTCDyxSWW+i2YmuiqLCcYNHOziPHcoIg+I3Nkag//vgDR44cQatWrbhjrVu3xnvvvYf+/fvbdXOEZVzP4sC8T1S9ioFSxXAfjETLxfqaKOrOIwjCudgciZJKpaioqDA6XllZCYlEYpdNEdbhKoXl8nrzH4q6xeZ8fxxE82B7TRSJKIIgnIPNImrEiBGYPHkyjh49CoZhwDAMjhw5gpdeegmPPPKII/ZImMFV6onYkS6WIlHqdfx+HETzoLB2dp6IrYmi1w1BEM7BZhG1atUqxMXFITk5GTKZDDKZDP3790f79u2xcuVKR+yRMIPEVbrzLFgciIUCsBk86tAjgEbURJFPFEEQTsLmmqiAgAD897//RWZmJi5fvgwA6Ny5M9q3b2/3zRGWcRWPJUvpGYFAAIlYiNo6Fe9ru4jmgXMsFzfUnUc1UQRBOJdG+UQBQHx8POLj4+25F8JGuJooHkei6pUqsJ9x5gqFpWIRiSiCg4tcWmm2STVRBEE4C6tEVHp6OhYtWgRvb2+kp6dbXLt8+XK7bIxoGA8XKCzXFXjmCoVdpbaLaB6sTueJyCeKIAjnYpWIOn36NOrq6rj/E/zAFYb36gojcyKKXMsJXRT1msLyBrrzKBJFEISzsUpE7du3z+T/CefiCmabrIgSCLQfeoZQJIrQxdbCcurOIwjCWdjcnff888+b9ImqqqrC888/b5dNEdbhCuJD1yNKIDAjolzENJRoHqz1iaJIFEEQzsZmEbVx40bU1NQYHa+pqcHXX39tl00R1sGKDz5bHFga+cIi9VCPfuGzGCSaD61jueXuPBHbnUcWBwRBOAmru/PKy8s5c82KigrIZDLuOqVSiV27diEkJMQhmyRM4woWB3UWPKJYpBSJInRQWJnOo0gUQRDOxmoRFRAQAIFAAIFAgA4dOhhdLxAIsGDBArtujrCMS3TnWRj5wiL1YGu7qLCcaExNFIkogiCcg9Uiat++fWAYBg888AB+/PFHvQHEEokE0dHRiIiIcMgmCdO4UmG5pXSeq8wAJJoHqokiCMJVsFpEDRgwAACQlZWFtm3bmi0SJpoPV7I4sFwTxf/HQTQfdZoaJ0vRS0DXJ4peNwRBOAebHctv3ryJmzdvmr3+/vvvb9KGCOtxhQiO3IrCcld4HETzYW06jyJRBEE4G5tF1MCBA42O6UallFTX0my4wgBiq2qixOruPIpEEYBuYbmV3XkkogiCcBI2WxyUlJToXQoKCpCRkYE+ffrgt99+c8QeCTO4gk+UVTVRLpCWJJoPqokiCMJVsDkS5e/vb3RsyJAhkEgkSE9Px8mTJ+2yMaJhXGEAsfYDUWR2DY19IXSxuTuPfKIIgnASNkeizBEaGoorV67Y63SEFbhEJErZcDrPFR4H0XxwheUUiSIIgufYLKLOnTundzl79iwyMjLw0ksvITExsVGbWL16NWJiYiCTyZCUlIRjx45ZXL9161Z06tQJMpkM3bt3x65du/SuZxgGc+fORXh4ODw9PZGSkoLMzEy9Ne+88w769esHLy8vBAQEWLy/u3fvok2bNhAIBCgtLW3MQ3QIriA+2L1ZNNukmihCh7p6mp1HEIRrYLOISkxMRM+ePZGYmMj9f9iwYVAoFPjiiy9s3sCWLVuQnp6OefPm4dSpU0hISEBqaioKCgpMrj906BDGjBmDiRMn4vTp00hLS0NaWhouXLjArVm6dClWrVqFNWvW4OjRo/D29kZqaipqa2u5NQqFAqNGjcKUKVMa3OPEiRPRo0cPmx+bo3GFrjZbaqL4/DhYquT1GLxsP+ZsP+/srbgt1nR0AhSJIgjC+dgsorKysnD9+nVkZWUhKysLN2/eRHV1NQ4dOoROnTrZvIHly5dj0qRJmDBhArp06YI1a9bAy8sLX331lcn1K1euxNChQ/HGG2+gc+fOWLRoEXr16oVPPvkEgDoKtWLFCsyZMwcjR45Ejx498PXXX+POnTvYvn07d54FCxbgtddeQ/fu3S3u77PPPkNpaSlmzJhh82NzNC5htmlFOk/qQoXlf+eW41phFXaey3X2VtwShmF0aqIa6M4TUXceQRDOxWYRFR0drXeJiorSm6NnCwqFAidPnkRKSop2Q0IhUlJScPjwYZO3OXz4sN56AEhNTeXWZ2VlIS8vT2+Nv78/kpKSzJ7THH///TcWLlyIr7/+GkKh3crH7IauiGIYfn6QyG2KRPG/sLy4SgEAKK+t5+1z7sooVQzYp7Uhs02KRBEE4WxsVgavvvoqVq1aZXT8k08+wfTp0206V1FREZRKJUJDQ/WOh4aGIi8vz+Rt8vLyLK5n/7XlnKaQy+UYM2YMPvjgA7Rt29bq25SXl+tdHIlUpK4lYhj+fpBY5VjuQpGoEo2IUqoYVMrrnbwb96NOp9OOZucRBMF3bBZRP/74I/r37290vF+/fvjhhx/ssik+MGvWLHTu3Bljx461+jZLliyBv78/d4mKinLgDgEPsTbdwdd6IoUVRcKuVBNVUl3H/b+sps7CSqIx6L4GqCaKIAi+Y7OIunv3rkmvKD8/PxQVFdl0rqCgIIhEIuTn5+sdz8/PR1hYmMnbhIWFWVzP/mvLOU3xv//9D1u3boVYLIZYLMbgwYO5Pc+bN8/kbWbNmoWysjLucuvWLavvrzHopjv4KkAUGgd7y5Eo1+nOK6lWcP8nEWV/dOv7WJFkDurOIwjC2dgsotq3b4+MjAyj47/++ivatWtn07kkEgl69+6NvXv3csdUKhX27t2L5ORkk7dJTk7WWw8Ae/bs4dbHxsYiLCxMb015eTmOHj1q9pym+PHHH3H27FmcOXMGZ86c4ToP//rrL7z88ssmbyOVSuHn56d3cSRikRDs5wxfi8utszhwnUgUWxMFAOU1lM6zN3U6jQgNDTkXa+oU68lskyAIJ2GzY3l6ejqmTp2KwsJCPPDAAwCAvXv3YtmyZVixYoXNG0hPT8f48eNxzz33oG/fvlixYgWqqqowYcIEAMC4ceMQGRmJJUuWAACmTZuGAQMGYNmyZRg+fDi+++47nDhxAmvXrgWgnuM3ffp0LF68GPHx8YiNjcXbb7+NiIgIpKWlcfebnZ2N4uJiZGdnQ6lU4syZMwDUItHHxwdxcXF6+2SjbJ07d27QV6o5kYiFqK1T8VaAWDM7T+JCjuWlFIlyKNZ25gFUE0UQhPOxWUQ9//zzkMvleOedd7Bo0SIAQExMDD777DOMGzfO5g2MHj0ahYWFmDt3LvLy8pCYmIiMjAyuMDw7O1uvM65fv37YvHkz5syZg9mzZyM+Ph7bt29Ht27duDVvvvkmqqqqMHnyZJSWluK+++5DRkaGXhfh3LlzsXHjRu7nnj17AgD27dtncsgyX5GINCKKr5EoKzx/XDcSRSLK3lg7Nw+gmiiCIJyPzSIKAKZMmYIpU6agsLAQnp6e8PHxadImpk6diqlTp5q8bv/+/UbHRo0ahVGjRpk9n0AgwMKFC7Fw4UKzazZs2IANGzZYvceBAwfysqVdPZOunrcCxN3MNqmw3LEorJybBwAiEUWiCIJwLo0yP6qvr8fvv/+Obdu2ccLizp07qKystOvmiIaRaD5I+CpA5Fak81ypsFw3EkUiyv6wFgfWiCiKRBEE4WxsjkTdvHkTQ4cORXZ2NuRyOYYMGQJfX1+8//77kMvlWLNmjSP2SZiB767l7hSJqleqUF5LkShHUmflyBeAuvMIgnA+Nkeipk2bhnvuuQclJSXw9PTkjj/66KNGXXOE4+G7ALGlJorvkaiymjroZnRJRNkfaxoRWLjuPIpE8Zp6pQpvb7+AXedpVBLhftgcifrrr79w6NAhSCQSveMxMTHIycmx28YI6+C9iLIlEqUZX9NQa7uz0PWIAkhEOQKuJkpM3XnuwsmbJfjmyE0culaEYd3Dnb0dgrArNkeiVCoVlErjVvTbt2/D19fXLpsirIf9xs73dJ7UigHEAL+jUbpF5UDLFFEMw+BqQQXqHfR6q7PC4Z6Fq4kinyhew/7dVNSSrxrhftgsoh588EE9PyiBQIDKykrMmzcPw4YNs+feCCvgfSTKinSe7nV8FYOAtqicDZS1RIuD3RfzkbL8T3z42z8OOb8theUUiXIN2DrCGgX/feAIwlZsFlHLli3DwYMH0aVLF9TW1uLpp5/mUnnvv/++I/ZIWID9sOGtiLImnafzgSmv4+fjALTDh8P91H5jLTESde52KQDgakGFQ87Pjgmy5HDPIhZRd54rwH7ZqFLU89ImhiCags01UW3atMHZs2exZcsWnD17FpWVlZg4cSKeeeYZvUJzonmQukF3nkAggEQshKKev6ahgDYtERPkjTtltZpCc/7WcDmCO6U1ABw38qau3naLA+rO4zesiFIx6nS9zEPk5B0RhP2wWUQVFhYiODgYzzzzDJ555hm9686fP4/u3bvbbXNEw/A+nWdlt5VUI6LkdfwN+bOF5TFB3jh07S7qVQyqFUp4SxvlWeuS3CmtBQA9qwd7orBp7At157kC5Tq1UNUKJYkowq2wOZ3XvXt37Ny50+j4hx9+iL59+9plU4T1SHiezpNb6fvD94gaoK2Jigzw5OpxHCUm+MqdMjYS5ZjHXWeDY7mYaqJcAt3XSrWCissJ98JmEZWeno7HH38cU6ZMQU1NDXJycjB48GAsXboUmzdvdsQeCQvw2WyTYRirzRM513Ie10Sxw4dbe0vg7+kBoGXVRSlVDPLK2EiUg9J5Sut9okTkWO4SlOmJKP5GmgmiMdgsot58800cPnwYf/31F3r06IEePXpAKpXi3LlzePTRRx2xR8ICfE7n1asYzpxSKrIcwuezGGRhI1EBXjoiqrrliKjCCjknWCrl9Q6xOWjMAGKKRPEb3WgtiSjC3WjU7Lz27dujW7duuHHjBsrLyzF69GiEhYXZe2+EFXjw2CdKV9hZm87jcySKLSxv5S2BXwuMRLGpPJZKuf2jUYpGWhxQ1xd/0W1CqHbAa4YgnInNIurgwYPo0aMHMjMzce7cOXz22Wd45ZVXMHr0aJSUlDhij4QF+ByJskVEaSNR/P2mykaiWnl7tMh0HtuZx+KIDj3baqK0aygaxV8oEkW4MzaLqAceeACjR4/GkSNH0LlzZ7zwwgs4ffo0srOzqTPPCUh5XFjORsdEQgEXNTCHlMdiENAfPqyXzmvJIsoBRfWcY7k1Y190OvioLoq/6P6NVFFhOeFm2Nyb/dtvv2HAgAF6x+Li4nDw4EG88847dtsYYR2uEImypkhYwvMhxLrDhwM8PeDvqf7TaUmu5ay9AYsjHjsrvC2NCWIR6whzikTxkzqlSi/6RK7lhLthcyTKUEBxJxIK8fbbbzd5Q4Rt8LkgW25DkTDXncdTEcV6RPl7ekAsElIkCg6KRNmQztONblIkip8YzsurIhFFuBlWi6hhw4ahrKyM+/m9995DaWkp9/Pdu3fRpUsXu26OaBg+DyC2pdOKfRz8FVHaonIALVNEaQrL2QiQI2qiFKxjuRWvGZGAIlF8x/Dvo4bSeYSbYbWI2r17N+RyOffzu+++i+LiYu7n+vp6XLlyxb67IxrEownpPEW9Cudvl0HloA8ghQ2eP3xOSwK69gZq8dQSRVSuJp0XF+wDwPmRKKFQADYYVU+jX3iJYcqXIlGEu2G1iDJsIaaWYn7QFMfyFb//g4c/OYCfz92x97YAaPdkzTBZzuKgnp9vsuzw4VZe6kiUn6xliajaOiXuap6DjmG+ABxUE2VD9BLQdug5KhJVKa/n7WvSFTAU2lQTRbgbjfKJIvhDUyI4/+RXAACuFVbZdU8sNqXzeB6JYtN5gS00ncfWQ3lJRIhqpR407gjXcq1juXVDnTnXcqX9RVReWS2S3vkdL35z0u7nbikYpnyryCeKcDOsFlECgcBoWn1Lml7PV5oyc66oUh1ZqHTQCA/W88mdCssDNek8rdlmy/hQyNWMe4kI8OQEpCO786xJ5wGOdS0/cv0uqhRK7L9SiKwix3zRcHcMv2RU83jAOEE0BqstDhiGwXPPPQepVAoAqK2txUsvvQRvb28A0KuXIpqPpkRw7lapf2cVDhqi2xiLA75GotiaKMNIVEsZQJyjiUSF+8u4VKaza6IArVeUI7rzLuWVc///5ewdvDI43u734e6wrxGBAGAYciwn3A+rRdT48eP1fh47dqzRmnHjxjV9R4RNSDQz6eoaEYm6y0aiHPTGZpvFAb9rotjhw2xNlL8mIqWoV6G2TgmZh+XZgK4Om86LDPDkonCO6c6ztSbKcZGoy7kV3P9/PkciqjGw0cpgHykKKuTkWE64HVaLqPXr1ztyH0QjaWwEp0ah5N7QDL1c7IU71UTpDh8GAB+JGEIBoGLUKQt3F1FsZ15EgKeDI1FqMWRN9BLQqYlyQHfeZZ1I1D/5lbiSV8EV1RPWwabzwv1lJKIIt4QKy10cD006w9ZaIjaVBwAVDopE2VLfIuW5Y7mhT5RQKGhRQ4hZj6hwfxn8HOjWbms6z1HdecVVCuSXq/9G+sW1BgD8fNYxXazuDNt8EOYvAwBUk08U4WaQiHJxGutYzqbygGaoibIhncf3SFQrbw/uWEvq0NNL53GRKAek8zgRZWN3np1F1OVcdRQqurUXnurbFoA6pUfWLrbBCu0wP1ZEUSSKcC9IRLk4jRUfupEoh3XnsT5RVkWi+NudZzh8mIUTUdXuLaIYhuHm5kXo1ERVyutRb2enfL7URF3KU9dDdQrzRUrnEHh6iHDzbjXO3S5r4JaELuzfTZi/2haDRBThbpCIcnHYwnJbRVSRXiSKaqIsYTh8mKWlRKJKq+tQo2lND/OXwVemLaW0d1OCzd15DvKJYiNRncL84CURY3DnEACU0rMV9m8jzF/d1U3pPMLdIBHl4tgjnVdTp7R7RAHQGfvi4t15hsOHWVpKTRRbDxXkI4HMQwQPkRBeErV4t3eHHldYbmUkSuSgSNRlTSSqc7i6kPyRhAgAwC/nch02JskdYV8fYX7qSFSdkuHlFyWCaCwkolwc9sNGqWJs+iC5W6nv6+UImwN38Yni3Mq9PPSOt5RIlG4qj8VRHXp19TYWlovs351Xr1ThSj6bzvMDAAzoGAxfmRh55bU4cbPEbvfl7rCvj3BNYTlAo18I94JElIujW4Bri1cUOweNxREpPdt8ovhbE2VotMnSckSUOhIV4a8johzUoSe3IXoJACIHdOfduFsFRb0KXhIR2rbyAqB+faZ2DQNAKT1rqa1Tcl+KWvtIuPeq6jpK6RHuA4koF0f3w8YWAdIcIsqWdB6vI1EGw4dZHDn+hE9w9gYB2miCIyJRDMPo1ERZ150ndkB33iWNyWbHMF8Ihdp9PKxJ6e06n+uQ9Le7wf5dCAWAt0QMT42XGhWXE+4EiSgXRzdVZosAMUznOcLmoDEWB3yMRLHpvAADEcUKCfePRKnTeZG66TwHuJYrVQxXwG+r2aY9I1GsySabymPpF9carbwluFulwMFrd20655cHsrDy90y77dEVYAW2r8wDQqEA3lJ19LJaTiKKcB9IRLk4AoGA+8CxpbicLSxnv/HzpSaKnyLK2CMKaIHpPL2aKE06z47iu06nw87WAcT2jESx417YonLdPQ3vHg4A+P74LavPp6hX4Z2df+Oj3/9Bfnmt3fbJd9jh3OzfiaeEjURROo9wH0hEuQG2psIYhuF8oqIC1TUfDknnsT5RNplt8u9bakM1Ue4+hDhXZ/gwi58DUpm6r1/bu/PsJ74vaewNOof7GV03RmO8uftiHgoqrBNEpTUKsBqPHeTcEmBfG2z9nLdEE4midB7hRvBCRK1evRoxMTGQyWRISkrCsWPHLK7funUrOnXqBJlMhu7du2PXrl161zMMg7lz5yI8PByenp5ISUlBZqZ+KP2dd95Bv3794OXlhYCAAKP7OHv2LMaMGYOoqCh4enqic+fOWLlyZZMfqyNgP3CsLSwvr63nvvVHt9aIKEdEohpRE8XHSBQ7fDjQTE2UO0ei6pUq5JWbSOc5wLVcN5IqFtpYE2Unn6iy6jrcKVM/XlNz8rpE+KFX2wDUqxhsPXHbqnOW6pix5pW1nEgU++WCfa1oI1Ekogj3wekiasuWLUhPT8e8efNw6tQpJCQkIDU1FQUFBSbXHzp0CGPGjMHEiRNx+vRppKWlIS0tDRcuXODWLF26FKtWrcKaNWtw9OhReHt7IzU1FbW12jcwhUKBUaNGYcqUKSbv5+TJkwgJCcG3336Lixcv4q233sKsWbPwySef2PcJsANsSs7aSBRbD+UrFaO1j9oEz9k1Ubp+V3wbrcFFolqgiMqvkEPFqF9jQZrXCuCY7jz2S4BEJIRAYO3YF/t257H1ULrjbQx5JikaALD5aLZV96srou60wEgU+3firRFRVZTOI9wIp4uo5cuXY9KkSZgwYQK6dOmCNWvWwMvLC1999ZXJ9StXrsTQoUPxxhtvoHPnzli0aBF69erFiRuGYbBixQrMmTMHI0eORI8ePfD111/jzp072L59O3eeBQsW4LXXXkP37t1N3s/zzz+PlStXYsCAAWjXrh3Gjh2LCRMmYNu2bXZ/DpqKrVEctjOvtY8EPppiT0eMftHWRIkaXMtaHDCMfm0MHzAcPszCfjjU1ql4aRJqD9hUXpi/TK9TzRHdebZ25gH2r4kyNNk0xfAe4fD39EBOaQ3+/KewwXOyNXVAS4tEqd9T2NeKlyadRz5RhDvhVBGlUChw8uRJpKSkcMeEQiFSUlJw+PBhk7c5fPiw3noASE1N5dZnZWUhLy9Pb42/vz+SkpLMntNaysrK0KpVqyadwxFwheU2RqJaeUu4AmFnWxzo1k3Z6r7uaLSRKP3IhK9MDDZg4q7RqBwTHlGAY7rzbJ2bBwAikX278y7lmu7M00XmIcITvdsAADYdvdngOXVnK+a2IBFVZlAT5UWRKMINcaqIKioqglKpRGhoqN7x0NBQ5OXlmbxNXl6exfXsv7ac0xoOHTqELVu2YPLkyWbXyOVylJeX612aA4kmimOt+NBGoqTwlWmHydobm9J5Ot1Y8jr+fFPVHT5sWFguFArgK3WM6SRfMGVvADgmEqWwcW4eYP9I1CUuEmVeRAHA00nqAvP/XS5osFhcNxKVW9by0nnaSJT6fYoiUYQ74fR0nitw4cIFjBw5EvPmzcODDz5odt2SJUvg7+/PXaKiopplf7Z257H2BkE+EvhwkSgH1EQprbc4EAoF2touHkWizA0fZvH3cu+6KPZDP8JQRDmkJkr9RNsiouzZnadUMfhHI6I6WUjnAUBcsA+S27WGigG2HMu2uLa0pmVGoliBzf6NeGm+cFSRTxThRjhVRAUFBUEkEiE/P1/veH5+PsLCwkzeJiwszOJ69l9bzmmJv//+G4MHD8bkyZMxZ84ci2tnzZqFsrIy7nLrlvVeMk1BKrKtO49N57X2lsLXkek8G9Mz3OiXOv6IKDaK4CcT6w0fZnH34nK2EFrXrRxwTHdenY0jXwD7RqKyi6tRU6eEVCxETGvvBtc/c686GvXd8VsW//ZKdSJRBRXyFuN2XmYYidI4ltfQ2BfCjXCqiJJIJOjduzf27t3LHVOpVNi7dy+Sk5NN3iY5OVlvPQDs2bOHWx8bG4uwsDC9NeXl5Th69KjZc5rj4sWLGDRoEMaPH4933nmnwfVSqRR+fn56l+bAQ2xbd16RicJyZ/tEAfodenzBXFE5i7uLqBwTw4cBbU1UpbzebqLAFnNWFq47zw7NCJc19VAdw3y5CJclHuwShiAfCQoq5Nh7Kd/supIq7WtDqWJQaDAtwF1h6+W4miiKRBFuiNPTeenp6Vi3bh02btyIS5cuYcqUKaiqqsKECRMAAOPGjcOsWbO49dOmTUNGRgaWLVuGy5cvY/78+Thx4gSmTp0KQO3gPX36dCxevBg7duzA+fPnMW7cOERERCAtLY07T3Z2Ns6cOYPs7GwolUqcOXMGZ86cQWVlJQB1Cm/QoEF48MEHkZ6ejry8POTl5aGwsOFunOamsYXlujVRFXIHpvOsjkRpugztEIlafzAL7/16ucl2CeaMNlk4EVXtfiJKpWK4SJRhTRQbwQTsV0/H1USJndOdpy0qt5zKY5GIhXjyHnXKftNR8ym90hr9OZUtJaXHpfM89WuiyCeKcCfEDS9xLKNHj0ZhYSHmzp2LvLw8JCYmIiMjgysMz87OhlCo/RDu168fNm/ejDlz5mD27NmIj4/H9u3b0a1bN27Nm2++iaqqKkyePBmlpaW47777kJGRAZlMm5KYO3cuNm7cyP3cs2dPAMC+ffswcOBA/PDDDygsLMS3336Lb7/9llsXHR2NGzduOOrpaBScxYHV6TxNTZS3hPswdKzFga2RqKa9yapUDN7ddQl1SgZP3tMG7YJ9Gn2uEjMeUSzaSJT7pSj2Xi5AWU0dfKRitG3lpXedh0gIL4kI1QolymvqjeYKNoa6etsLy+05O8/aonJdnujdBp/uv4ZD1+5CpWL0bCBYWJ8ogUBt4ZFbWgu0bfJ2eY+5wnIa+0K4E04XUQAwdepULpJkyP79+42OjRo1CqNGjTJ7PoFAgIULF2LhwoVm12zYsAEbNmwwe/38+fMxf/58s9fzCa47z2afKP2aKIZhrDY5tAbba6LsE4kqq6njipSziqqaJqI0H4DmRJS7DiFmGAaf7LsKABh7bzRkHsZeX34yD7WIslNTQmMKy+0ZibpVXA0AiA1quB6KJUojLpUqBiXVCs68VhdWRMW09kZWUVWL6NBjGEbrE+Wp7xNFkSjCnXB6Oo9oOrak89g3e0Bd58PWRNWrGLuOXGEYxuZ0nq0RNXOwIhFQi6imYG74MIufm9ZEHbx6F2dvlUIqFmLifbEm19i7Q4+NQFpbQwfo+kQ1/bVbpElzB/saCyFzeIiECNB0n+m+7nRhX0OsgWdLSOdVKZRcdJD9ouFNkSjCDSER5QbYYnFQUq0Aw6hTC4FeHvCWaA0jHeH5o7u/hpDaGFEzR7HOh9mNu00TUey5zKWr3HUI8Sf71LMmx/Rta1ZU2Nsrqq7eeZEopYrhftfBJqJJlmDH4RRVGBeM19YpuS8nnTUGni3BtZwV1hKREDIP9e+TZucR7giJKDdAasMAYrYeKtBLArFICKFQAB+J/euidIWQ1TVRIvsMIS6u0n6Y3SiqbtK5SnWidqZwx+68EzeKceR6MTxEArw4oJ3ZdfZ2LVc0YuyLvWbnlVQroNJ8uTD3uzZHa836IhORKDYKJRYK0D5EnVa+0wLSebpu5WyJgLeU0nmE+0Eiyg2wxaRS6xGl/aBwhFdUY0SU1MO2LkNz2Cudl1tWg0PX7gIA2gR6mlzDRaLcSESxtVCP92qDcH/TjxsANzLIfjVRznMsZ1N57JcLWwjyNR+JYu0NArw8EK7pcGxJkSjdIc6eHpTOI9wPElFugC3pPF2PKBZHjH7RjSqY6lgyhTYS1bRvqmy0DVB/62/s+Rb/cgnVCiV6tQ1A/7ggk2vcLRJ1IacM+68UQigAXhoQZ3Gtn50FZKNm57HdeU30iSqq0Lr420qQ5gvJ3SpjEcXaGwR4SRDhr+4Ozi+vdXvDTbao3FfH5Z/tzqutU9lt1iFBOBsSUW6ARKRx+rZCROl6RLE4YvRLY4wTpR72r4liGG3XlS38+U8hdp7PhVAALErrZlYIupuIWq2JQj2cEIGYBrrU7O1aXmfDmCAWe0eigmysh9K9DSvEdCnlujs90NpHCrFQABUDtzfcZIW1v46IYtN5AFDDo/mYBNEUSES5AbZEonQ9olgcmc6zJapgr5oowy6pLBvrouT1SszbcREAMC45Bl0j/M2uZT8kqhVKq8fu8JWrBRXIuKge0v1/A9s3uN7+3XnOm53XFBHFfiExGYmqZsWEBCKhAKF+6mgUO9jZXdGOfNEKJ6lYyDWxVDtg4LkrUVZT16gvdwT/IBHlBtgyLoV9o9eLRDlg9Iu8ESLKXjVRbGE5G6W4YWNd1No/riOrqArBvlKkP9jB4lo/nW/arh6N2nYqBwwDDOkSio5WuHbbvTvPiTVRhU2KREk05zBfWB6osUEI16T03L0uin1N6P59CAQCeJNXFADg6XVHMHj5Hyg0UUdHuBYkotwAVqjU2RCJauXdPDVRjYtE2acmqmukOoKUZcbmIPtuNXadz9UzP7xVXM0VVs8Z3lmvMNYUIqEAvhoR6uoiKkcz4qVvTCur1tu9O68xNVEi+3TncTVRvrbXRHGRKBMpOvY1wXpJscXl7m64yb4mdNN5gNbmoKoFF5czDIN/8iugqFfhwp0yZ2+HaCK8cCwnmobElu68KuMCWl8H1kTZElWQ2pCWtARbE9W7bSDO3io1G4ma/M0JXNaM+ogN8kZyXGtcLaiEvF6F5Hat8UhChFX35+fpgQp5vcuLqPxydXQkxM+6aIyvg7rzJDZYHFgbiapWqH8/5roNm5LOY32liirlRq7/JQY+Y2wkyt0NN7lIlMGXEG+JCIUAalpwJKpSXs+5818vrMKgjk7eENEkKBLlBthWE2WczvN1QDqvUYXl4qbXRDGM1pG9d3QgANPpvMIKOSeghAK1FcLmo9k4llUMsVCAhSO7Wj0Cx12Ky/PL1a8Ntm6nIbh0np0ed2PSedbOzhv/1THcv3Sf2TQa51beqJootUCqrVMZpalKDSJRYX6siHLvSJSuT5Qunpp0XlULFlGs7QUAXC+sdOJOCHtAkSg3gO3Os6WwXNcniuvOs2c6T7MXW0Z42CIGzVFeq/2W1ys6AABwp6wWtXVKvflvp7JLAAAdQn3ww5R+OHa9GIeu3cXpWyV4rGck4kMbrglicQevKIZhuEiU1SLK077deQrWsdyG14w1kSiVisGZW6WoUzK4lFeOMH/jx9eUSJS3VAxPDxFq6pQoqpTrdaGVVmvNbQEgIqCFRKJM+EQB2tEvNS04ncd+yQOaPpaKcD4kotwAbuZcA7VEtXVKTijpRaI0b3R2jUQ1oiaKHfvSlEgUm8rzlogQ5ieDn0yM8tp63LxbrVcszYqo3tGB8JN5IKVLKFK6hDbqPlkRda3Adb9VVsrruShKqJXpPLbzqlJej3qlymaTSkMUTYpEmX/NFFTIOWF9p9Q4AqRSMdqu1UbURAHqaNTtkhoUVSoQ3VprDcEOsOYiUZp0Yq6bd+exwtpsTZS85UaiinVE1PVCElGuDqXz3AD22+21wiqLaQ1WYHiIBHqtx2x3XqUjfKKaORJVrNN9KBAIEKvxOjL8xnfqplpE9Wob2Oj7YrkvXm3EuXr/NRzILGry+ZwBm8rzlYnhJbHuu5WvTpTBHk0J2ZoGAGtFHACINWNf6i2YbeaUalvJTYmospo6LpLV2tv2SBSg4xVlUFzOWhwEeGoiUZooWEGFextucpEoT8NIlKY7rwX7RJXqiKi88lpUtXC7B1eHRJQb0DHUF94SESrl9fgnv8LsOm0qT6pX7+PnSJ+oRtVENf4Ntsig+5A1jNQdRKyoV+HcbXVXTK/opouoZ5LaIi0xAkoVgymbTuKqC0akbE3lAWrRy47yaGqHXr1SxdWoWfLlMsSamqjbJVrhZMqfiRU+/p4eNol+XdhGDV23fIZhtOk8b7WY0DXcLHDj9vZyEz5RgNa1vCX7RBVX6X9ZpZSea0Miyg0Qi4ToqYmonNBEWExRxEVp9FMWPjppGXshb4zFgR0Ky9loG1vzFaNJregWl/+dWw55vQoBXh5o14ArtzUIBAK893gP9I4OREVtPSZuPK7nms4Hyqrr8NvFPLOGoFoRZVskhjPcbGIU81phFeT1KvhIxYhu5WX17aypidIXUcaRKK1HVONSeerbGkeiqhRKbl9sJErXcNNd66KUKoYrGzBM53lJ2fl5LTcSVWLw3nCNistdGhJRbgIbUTllQUQVs5Eog+JZh9REcek8UQMrtbA1UU1L5+lHokyl807qpPKs7cBrCJmHCGuf7Y2oVp64ebcaL31zssl+V/bkg98uY/I3J7H9dI7J67nOPF/rI1GA/Tr0Lmr8cjqH+1o9axEARCJrIlE66TwTXXFs9LIxReUsrblIlFZEsR+WUrGQqwUCdG0O3LNDr1LnfcTXoLDcizPbbLmRKN3CcoAiUa4OiSg34Z5oNhJVbHYN51burf+N21cnEqWy02DQxqTz7BGJ4sxEfcyn83SLyu1Jax8pvhrfB75SMY7dKMa8/1606/mbAlvAyqbMDOEiUSY61yyh7dBrqogqB2BbKg+wPRKVV1ZrJLiKNGm1IN/GiyhtJEr7AWlotMnCGm66q2s5+7g9PURGkWgundeSI1EaERWpeR1QcblrQyLKTejZNgACAXCruAYF5abfnE3ZGwDawnIAqLTTN8TGFJbbw2yz2EAoxmrSefnlcu7brz2Lyg2JD/XF6md6AQC2nLjFm6JRdryEuXldnIiyUUiwNS9NrYliI1FdIvxsup013Xk5OiKqTskYFX9z9gbejU/ntTaRzisxsDdgYSNR7jo/TzvyxbhBgUSU1ieKzR5cL6J0nitDIspN8JV5oKPG2+ikmZRekZl0nsxDxEWMKu3l+aNUv0k2xieqKWmwu1w6T/0Y/b08uLllN4qqcae0BrlltRAJBUiIsi3qYS33dwhGkI8UDAPeFJmzdT+3SkynkBpTWA7YJxLFMIxOJMo2EcV155mJRKlUDG5r6qDY13iOQV1UUzyiWNh6Kn0RZSYSxc7PK3fPdB6b2jWshwIonQdoxXXvtgEAgKzCKjCMfTIARPNDIsqNuCdG/c3GnIi6a6awHNAx3LSbcWITIlFNaP02LCwHwPn23LhbxaXyOof7Wt3K3xg6hPoAgMVuyeZCXq/kWu1vF1ebfMNma6JCbBVRdqiJulVcg4raeniIBIgPsd7kFGi4O6+oUg5FvQoioQBdI9UCzbC4nKuJsnc6T/NhyRaVs7h7JKrMjNEmQJEoQPselRAVAJFQgCqFkvv7I1wPElFuRO9oyx16nKGgCRGlrYuyj1dUY2qi2D2UVNU1ujbLsLAc0C8uP+nAVJ4uHTRRwUweRKJ0P9hNzfhjGAYFFeoPdFNu3pbQduc1XnyzqbyOYb42WwxwNVFmfKLYyFuYnwxRgequP2MRZY9IlPq2ZTV13GufjUSx9gYs7Pw+d62J0qbzLEWiWqaIUtteqJ+fED8Z2mo6USml57qQiHIj7oluBUD9oVRrwsyOm5tnwlCQrYuy2wgPzYeaLR+KMa29IRULUSmv1ysEtxaGYXTSeVoRpWtzcCq7FID9i8oNYUXUFTOF3M1JoYEf0a1ifRFRUl3HOXrbOjvOHpEoLpUXbnt6taFIFNuZFxnoiQhNIa9hBIgrLG+CxUGApwe3F1bIsx+W/mYiUe5quMnWxxl6RAHaSBRfagWbmyqFkou0t/KScBYrVFzuupCIciPaBHoixFeKOiXDmUmyMAyDIjbVZSES5cx0nlgk5GpizueUNbDamEp5PXe/uo8xJkj9be9KfgUuas7r+EiUOp2XyYN0npGIKtEvLmcjIq29JTZHguxRE8VGoth0my2IRZa789j6pzaBnogMYNNoWhHJMIxdLA6EQgEn3NnIlnZunn5EJsjNDTfZ14KpmihvjU9UTQt1LDe0vYglEeXykIhyIwQCgU5KT9/qoEqh1AoMk5Eo9Rue/QrLbU/nAUCPNgEAYCQCrYGNAHh6iPTqndg3qnO3y1CvYhDsK0WbQE+bz28L7ADjO2W1qLDjOJ3GwKbqWAw79PI119taDwXoRqKaks5rXFE5oE3nmevOY+0N2gR6aSNROv5MFfJ67rUa3ISaKEBbh8eJKDMWB0I9w033Ky4vMzPyBQA8PdR/ly11dh5bVM4K7nbB6i9blM5zXUhEuRm9zZhu5mq+fXtJRHrGfyza0S/2qolSv0naGtnoHqlO6ZxvhIgylcoDtF5RLL3taLJpDn9PD87929l1UYaRqNsGHXoFjXQrB5ruWF5YIUdBhRwCAdApzHYRJWqgO08rokyn89hUno9UDJmH9cawpmBFGFt7yH5gBngZR37ZeZfu6FpebqGwnItEtdDuPPaLHvuaaBdMkShXh0SUm8GKqJM3S7guLIZh8H7GZQBakWKIvUe/NCadBwA92qj3d+FOmUUXalNoHdn1P7T8ZB563Xq9ogNsOm9j4YrLnZzSY0UUK5IM03lsZ1BYkyJRjRNRbCovNsgb3lLbuyXFVtZEtQnQiqjiKgVqNIXNRRaaLWzFMBJVxhaWmxBRYZri8lw37NBj6ypNpfPYL3DVdcoW2dbP1sm10jQbsCLqdkk1ryYcENZDIsrN6BrhD6lYiJLqOlzXjBPYdioHv18qgEQkxMKR3Uzezu41UZoUiS0+UYA6vO0lEaFaocR1G2dKmerMY9GNRjm6qJyFbdf/J58fkSj2cRum8/LKm5DO42qiGve6aaxTOYvIgmM5wzCc0WabQC/4ycTw1nyIsyk9e3TmsbDnYCOi2kiUsZiI0BSXn7xZ0iRzWT7CPm7TZpvqYwwD1Na51+O2BvY9ihXWwT5S+ErFUDFA9l3TRrgEvyER5WZIxEIkRAUAAE7eKEFeWS3m/6wePzJ9SDw6hpn24bH3/LzGWBwA6g/FbpoPVFvrosyl8wBth55EJGz0B7at8MUrii1eZovpb5fU6EUBmpTO04lgWuo0u1VcjV/P5xpZV/zdhHoowHIkqqhSAXm9CkKB2rpBIBDopPTsL6I41/IKOVQqxuzYFwDc32HGxTwM+egPZFzIc4vITFl1HS5omjfah/gYXe+pkzJtiYabpQYu9gKBALGaaNQ1Sum5JCSi3BDd4vKZ286horYeCVEBmPyvdmZvw1oc2K8mqnHpPADorknp2dqhZzjyRZdYTYde10i/Jte+WEs8l87jRySqR5sACAXq2YS6dVKNHT4M6A+YtZQKnrXtPKZsOoV1f13XO8515jVSROlaHBiKEDaVF+Yn416HrIhi02jauXlNT+dxruVVClTU1oPVdYZmmwDwaM9ILH28B4J9peqB1d+exJh1R7jnw1XZ/Xce6pQMOob6or0J41SRUACZh/p30RK9oopZEaXzHsXZHFBxuUtCIsoNYYcRbz99B/uvFEIiFuLDJ3pAbCEq5Gvnmih5E0QUWxd17napTbczHPmiy8jESCRGBeDF++Ns3k9jiddEovLKa40MLpsLhmG4kS/h/jLO6FG3Lood+WKr0Sag/v2y0QVzHXoMw3C/y49+/wc3NR5gFbV1uKFJYTQ2OsiOfQGMo1G6nXksrIhirQ8K7WBvwBKkE4liU1reEuMhvIA6AvFknyjsmzEQUwe1h1QsxJHrxRj9+RGjRgA+UVghx9UC85HVX87lAgBG9Ag3u8a7BRtusnPzdG0vuA49ikS5JCSi3BA2bcPWJb0+pAMXFTGHvWui5I1M5wHa4veLd8ptMiM0NfKFJaqVF7a/3B9Du4XZvJ/G4ifz4IwVLX3wOJLyWq13VrCvFFGtNCJKY7hZr1RxKa2QRqTzAG3tCyscDCmslHM1U7V1Ksz+6TwYhsGlXPVzEu4vM5mCtQaRSNtlaVgXxYqoSB07C0OvKMfURMl17A0sPy4fqRgzUjvifzMGIjLAE5XyelzgcTTq+Q3H8dDKv7iUnS7FVQocvFoEABiREGH2HGxxeVULTOcZWhwAuh16FIlyRUhEuSGB3hLEaf4we7YNwAsW0ngsbFrGHpGo/PJaZGmK2tm5dbYQ09obvlIx5PUqm+wBLBWWOwtWvDqruLxQ4wHlJ1O38LOjT9ji8qJKBVSMOs1iyj/MGqJbsTUdph/jVc1jb+0tgVQsxMGrd/HDydtNTuUB2poowFQkStOZpyOiDL2i7FsTpX7d3a1UcKaKpuqhTBEZ4IluGrNRvhYYK1UM/s4tR52SwWf7rxldn3EhD0oVg64Rfpw3mynYSFSNFZEod6gT08WwsBzQH0tFuB4kotyUlwe1R9/YVvjoyUSubsQS9qyJ2n0xDwDQq21Ao1JEQqEA3RrhF3XXjMWBM+kQ4tzicraonPUwitLM6mLTeWwqL9hHatXrxBRskbS5ETesEO7ZNhCvDekAAFi88xL+/KcQANClCYX+uns2jETpupWzsOlM1iuKFVHBdqiJYl939SqGS1masjcwBztHLbuYnyLqbqWcE6q7LuQaRU5+OXcHADCih/koFKATiWrgC9sv5+4gYcFv2H+loLFb5h2lJmwvWBFVUl3HiW/CdSAR5aY81qsNvn8x2cho0hz2TOftOq+ui3iom/m6iIbg6qJySq2+zV2usLzpUQV70cHJxeWFRiJKP53HiqjQRohdlk7h6sd42YyIuqoRUfGhPnjhvlh0jfBDWU0d9l1Ri6imRKJEOqapdQapX1M1UZE63XkMw6Cown41UVKxiPs7uqoRGP5WRqIA/oso1goDUFsUfP6HtkmgsEKOI9fvArBcDwVYP/pl98V8lNfW47e/8xu7ZV7BMIxOYbn2deElEXOWF1Rc7nqQiCIAAL6asS/yelWTfGuKKuU4lqUeOdOU+iOuQ8/KSFS1op7znWnFo0hUvI02B2XVdUY2AE1BK6LUb9JcOs8gEhXahJEnnRqMRKmPx4f4QCwS4v3He+hFkJoiooRCASeMjl7XjjpiGMZkOi/UXwqBpkPxdkkN90FuDxEFaAc4s8LRcG6eJbgoIV9FVJk2NQwA207f5sbW/HohFyoGSIgK4B6HOawd/cI+D9ec7PhvL6p1Rm8ZRijZ4nKyOXA9eCGiVq9ejZiYGMhkMiQlJeHYsWMW12/duhWdOnWCTCZD9+7dsWvXLr3rGYbB3LlzER4eDk9PT6SkpCAzM1NvzTvvvIN+/frBy8sLAQEBJu8nOzsbw4cPh5eXF0JCQvDGG2+gvt49iyF9dCauNyWl99vFfKgYdXF4Q2+mlugRGQAAuJRbYZWoY1N5ErGQM1TkA2xNVEGFnPOIMce+KwVIXPQbPv7fVbvdP9uZF2KQzsstq0W9UqW1N2iE0SYLG23LK6/lXLp14SJRmpb3bpH+eOG+WADqmiFWBDWWkYnq9NFPp29zx+5WKVBbp4JAoE3hAepoESt0zmo6Bj09RI1ySzcFm9K7WqD+MDRlb2AO3UgUH2uBWMGdHNcafWNboU7J4Iu/sgAAv5xVR58fbiAKBWgjUQ35RHEiyk2EBVtULhEL4WXwHkXjX1wXp4uoLVu2ID09HfPmzcOpU6eQkJCA1NRUFBSYzoMfOnQIY8aMwcSJE3H69GmkpaUhLS0NFy5c4NYsXboUq1atwpo1a3D06FF4e3sjNTUVtbXacLRCocCoUaMwZcoUk/ejVCoxfPhwKBQKHDp0CBs3bsSGDRswd+5c+z4BPEEkFHB/2E0pLv/1giaV171pXXBRrTzh7+kBhVJlVRRHtzPP0XPxbMFHKuZEQkPF5esP3gDDADvP37Hb/ReW66fzgn2kkIiFUKoY5JbVaiNRjezMA9RNCexjvJxXrnddSZWCG60SF6JNLU9P6YBxydGY/3DXJv++HusVCQDYf6WQq3FiU3mhvjIjiwG2uJw1c7WHRxQLZ3Og2Ye1heWAuotQIFBHLO7ysDaGTeeF+cnwfwPVViH/OZaNS7nlOK4ZeD6se8Miin2fsWRxUCWv556Dokq5SXHuarD2Bq28jN+j2Loo6tBzPZwuopYvX45JkyZhwoQJ6NKlC9asWQMvLy989dVXJtevXLkSQ4cOxRtvvIHOnTtj0aJF6NWrFz755BMA6ijUihUrMGfOHIwcORI9evTA119/jTt37mD79u3ceRYsWIDXXnsN3bt3N3k/v/32G/7++298++23SExMxEMPPYRFixZh9erVUCj49wZnD5paF1VarcDha+q6iKbUQwFqHx2tX1TDKT0+duaxWJPSK6yQ40BmoWZdpd18pdhIFBt9EQoFaBPA1kVVI7+CtTdofCQK0Kb0DOui2NqgyABPbuQHoC4uXjiyG9J6RjbpfgGgfYgvEtr4o17F4OezagGaU2JcVM7CCr6zt0oB2C+VBxg3NTRkcaCLVCxCuOb3wMe6qLwyTdTSX4YBHYLRNcIP1QolXvzmJBhG7U8XYUVU0csKnyjD+Y7X3KBWyNIYIDadRx16rodTRZRCocDJkyeRkpLCHRMKhUhJScHhw4dN3ubw4cN66wEgNTWVW5+VlYW8vDy9Nf7+/khKSjJ7TnP30717d4SGhurdT3l5OS5evGj1eVwJbYde40TUnr/zUa9i0CnM12KLs7WwflHnrSgutzTyxdlYM4j457N3oFsKdTq7xC73bVhYDgBtdDr0CnSiC02hoxkRxRbUs0LSUTyqEWPbTuUAMG1vwMJ6d7FeR/YUUYbnsqUmCuB3XVReuVqYhvmpR+hM0USjWMHXUEE5izYSZf59xtDmwR3qokx5RLGwruU371bbPHidcC5OFVFFRUVQKpV6QgUAQkNDkZeXZ/I2eXl5Ftez/9pyTlvuR/c+DJHL5SgvL9e7uBLa+XmNi4L8ekH9vFgT0rcG2yJR5ke+OJt4zubA/AfBf8+oP/zZD5hTN+0ronSNNKMCtR16eVw6zz4i6opBOo8tKm8f7FgR9XBCBMRCAc7nlCEzv8JkZx4LGy2pUti3qBzQzs9jsSUSBejURfHQK4otLGcF90PdwrkvSwKB9X/31kSiDCNx7lAXZcojiiUiwBMSsRAKpYozgiVcA6en89yJJUuWwN/fn7tERUU5e0s20ZTRL+W1dTiQqXYrfshOruDd2wQAUHd91TbQDm1p5Iuz4SJRZlzLrxVW4uztMoiEAkwZoP52f8IOIqpOqeKel2CdD3c22nG1oJLzrWlKTRQAdApTd9j9k1+pVxSta2/gSFr7SDGwYwgAYNvpHIuRKMOUU7AduzkNz2VLTRTAb5sDrglBE8kTCbXRqH/FB1udErYmEsWKYPY9yZyRqytRwnpEeRu/JkRCAWJaq3/37vBYWxJOFVFBQUEQiUTIz9f3AcnPz0dYmOkP4rCwMIvr2X9tOact96N7H4bMmjULZWVl3OXWrVtW3x8faEpN1P8uFUChVKF9iE+DI2asJcJfhtbeEtSrGFzKtRzV46PRJgs7zb6oUsF9G9Xlv6fVUaj744PwYFf1a+vMrVKbRt6Ygn1OREKB3rdf1ubgpCZlKBEL4e9p24e9Ie2CveEhEqBSXs99AAJaEWVqGK29eVxTYL79dA5uakRIpIWaKJagJtg7GGIYibLFbBMA2rbmp4iqlNdzX650U7+jerfB18/3xUdPJlh9LmsKy9nHf398MAD3EBaskWYrM6+JdkFUF+WKOFVESSQS9O7dG3v37uWOqVQq7N27F8nJySZvk5ycrLceAPbs2cOtj42NRVhYmN6a8vJyHD161Ow5zd3P+fPn9boE9+zZAz8/P3Tp0sXkbaRSKfz8/PQurgTrFdWYSBTXlWfH2XQCgYDzizpxw3JkxtLcPGfjLRVzERHD4nKGYbD9jLoYOq1nJOJDfOArFaNaoTRrXlkpr7eqboJN5QX5SCDU8WViDTfZ69kal6bgIRIiTpOyY/2iKmrrkKtJAbFC0pE80DkEfjIxcstquVZx0+k8/YiJPc1ZDVODfjLbrBP4WhPFpvJ8pWI9OwiBQID7OwQbiUdLcOk8Cz5R7OMf0FEtorLvVhuZqboa2sJy0+9RsWRz4JI4PZ2Xnp6OdevWYePGjbh06RKmTJmCqqoqTJgwAQAwbtw4zJo1i1s/bdo0ZGRkYNmyZbh8+TLmz5+PEydOYOrUqQDUf9TTp0/H4sWLsWPHDpw/fx7jxo1DREQE0tLSuPNkZ2fjzJkzyM7OhlKpxJkzZ3DmzBlUVqq/8Tz44IPo0qULnn32WZw9exa7d+/GnDlz8PLLL0Mq5V/KyB6wXlHlNtZEVcnrsV/jPt3UrjxDHuikTtF8dzzboncOnwvLAW1Kz9CQ8lR2KbKLq+ElEWFIl1AIhQL0jFYPkD5pIqV3/nYZei3ag9nbzjd4n4WV6g++EF990RBlICyamspj4Uw3NUKRrWMJ8ZU2OdJlDVKxyGjwraFgAtSvEamO7UGQHaOXupFQP5kYYhsHcLPpvNzyWsjrG54t11zYw9mexYv1iaoz/WWNYRguEtU3phW8JCLNKB1+CUtbsVRYDmiLyykS5Vo4XUSNHj0aH374IebOnYvExEScOXMGGRkZXBF3dnY2cnNzufX9+vXD5s2bsXbtWiQkJOCHH37A9u3b0a1bN27Nm2++iVdeeQWTJ09Gnz59UFlZiYyMDMhk2jeAuXPnomfPnpg3bx4qKyvRs2dP9OzZEydOnAAAiEQi/PLLLxCJREhOTsbYsWMxbtw4LFy4sJmemeaHq4myIp0nr1fir8xCLPj5Ih5a+Rfk9SpEt/ZC53D7pm0e7RkJL4kI1wqrcFgzVsIUXGE5D9N5gLZIftlvV3DihtZZmy0oH9o1jPuGfo8FEbXh0A0o6lX46XROg2K3oNy4Mw9Q1+n46EQTmmpvwNJRUxfFRtDYbkRH10Ppwqb0ALU4lIqNjVcFAoFeXZQ903m+UjHnS2VrUTmgjqR6SURgGK1NAx8wLCpvCl4eGhFlJhJVWCGHvF4FoUCdjo3j3LxdO6VXrPGJMlcnxxpukohyLexj09tEpk6dykWSDNm/f7/RsVGjRmHUqFFmzycQCLBw4UKLgmfDhg3YsGGDxX1FR0cbuaG7M9ZYHNQrVXh312VsOZ7NdTcBgEQkxEsD4uxudOkr88CjPSOx6Wg2vj1yE/3igkyuK67kb2E5ADx/XywOXi3C8RslGPvlUXz2TG/cFx/E+RqN1PFL6m1GRFXK67m5hAqlCnsv5ePRnm3M3idnb2CQahEIBGgT6MmJnVBf+4ioTgYdelw9lIM783Tp1TYQ0a29cPNutclUHktEgIz7sLJnd55AIECQtwR3ympttjdgb9+2lRcu51Ugu7ia8w9yNvbq4gTApQPN1USxHlHh/p6aNLE3zueUubyIKm0gEhWrqYnKKa1BjULJDWom+I3TI1EEf/CTWa6Jqleq8Nr3Z/HVwSxUKZQI9pVi9D1RWDO2N07NHYIxfds6ZF/PJkcDUA8kzdcZgspSW6fkBB1f03l+Mg98/XwSHugUgto6FSZ9fQJvb7+Akuo6BPlI0T+uNbc2ISoAQoH6zZSNAADArnO5ekNbd57LhSU4o00TkRbdkTz2SuexNgfXC6sgr1dqRZSdGg2sQSAQ4PFeamEZb6EOK0IzCkYiEtpct9QQbGSrMZEogJ91UezfXZh/018rrDioMtOdx6by2NQmG4ly9VohSxYHgPq9i41S3bjr2o+1JUEiiuDw4brzjNNEdUoVpn13Bj+fvQMPkQAfj+mJo7MG4/0nemBotzC99JC96RTmh74xraBUMfjPsWyj69k3Jw+RwO4fiPbEUyLC58/2RlpiBOpVDL47ru7efCQhQq92xkcq5iwDdKNRW0+q16dpZsX9+U+RxZSeKY8oFt26qDA71LkAahNLX5kY9SoG1wqqkMnNzGveaMqUgXF4//HuSH+wg9k1bDovyMf+Y4LY5gZb7Q1Yonloc2DPdJ63Jm1do1CarHPMvqtOY7INEO14nM6rqK3Dz2fvNDjfs0ahhJwdPmzhi552/AuJKFeBRBTBYc7iQFGvwtTNp7DzfC4kIiHWjO2NhxMi9Dq+HM1YTTTqP8eyjbp0dL/h8Wlunik8REIsfzIRz/WL4Y6l9YwwWndPjH5K73phJY7fKIFQAMx8qDPah/hwKT1zFJhJ5wHaDyjAuPC8sQgEAi6ld/Z2KZeWaW4R5SESYnSfthYfF2tzYM96KBY2PWirvQELH20O8u2YzmMjUfUqBgoTHXfs64aLRGlmLl4rqOTdYOZP/ncVr/znNJbv+cfiumJ2+LDI8oD0WK64nH+CkTANiSiCw1RNVGGFHC9vPoXdF/MhEQvx+bO9MbhzqLlTOIyhXcMQ5CNBfrkcv/+tLxz43plniFAowLyHu2DJY90xd0QX9NCYiurC1UVpvJx+OHkbAHB/h2CE+cs4d2hLKT1TI19YdCNR9krnAdqU3q7zuWAY9dgTW9rfm4sBHYPRJdwPT95jf0PcPrGtAAA92wY06vZRXCSKR4XlXDrPDoXlOiKixkRdFCse2echprU3BAKgvLaeG2bNF05r5i9+f+KWxW5K1iMqwMvD4hc9LnVJxeUuA39zH0Szw459Ka5SYP6Oizh0rYgbVSIVC7F23D0Y0CHYKXuTiIV4qk9bfLLvKr45chMP6YyY4HtnnikEAoHFGrJebdUi6mJOGark9dxMuFG91R/6w7uHY9XeTC6lx9azsTAMY1lE6dVE2ScSBWidyw9pBlHHN4PJZmMI9ZNh17R/OeTcT94ThYe6hXF/T7aiHf1SBYZhnB5drVeq9DzFmoqHSAiJSD3ipEqhRIBB/f9tAxEl8xAhKtAL2cXVuFZYafL17AwYhuE6UIurFNjzdz5G9DCOKgMN2xuwUDrP9aBIFMHB1hPV1Cmx4dAN/JNfCYEA6Bbph/UT+jhNQLGMSWoLoUD9AX1VM0JFUa/iuszsaZrobNoEeiLUT4p6FYNP919FXnktArw8kNJF7ZvVIdQHccHeZlN6VQolV4Ru6kMnNsgbHUN90b99az3zxKbCpvNYM9D2zWhvwCcaK6AAdapRIFD/Dk053Dc3RZUKqBi18729oopsSq/GoLhcXq9Eribq1VZH6Mdp2v/5VBdVWCnnRrkAwHfHzE+oaKionKUdZ7jJv9QlYRqKRBEcwb5SDOsehqsFlUiKbY3+7VsjKba1xULI5iQywBODO4diz9/5eOunC5CIhThxo4QTCyE8+YZqDwQCAXpHB2LX+Tys/fM6AGBkQgTneyQQCNTRqP9dxc5zeUZWBwWaDyIfqZjzn9JFIhbi12n/gr2DHB3C9CNPzWlv4C7IPEQI85Mht6wW2cXVTk+Hsqm8EF8pRHaqg/SWiFBWU4cqA6+onJIaMIw65ac7fSAu2Af7rhTiWgF/IjSZmih9oJcHSmvqcOBqEW7erUJ0a2+jtaUW5ubpEqO5bXltPYqrFE7/3RMNQ5EogkMgEODTZ3rjt9cGYFFaNwztFs4bAcXy7L3qAvOjWcX4K7MINXVKtPaW4JGECIzXKdZ2B9iUXp1S/Y10lEH9zvAebJdeoVGXnqVUHotQKLB7qshP5qE3m645jTbdiSgedeixnXn2TPt6mpmfd0tjMBoV6KX32owL4V+HHjt9oE9MK/xLM+Nvy3HT0ShrI1EyDxH390Omm64BRaIIl+K+9kF4rl8M7pTWIDmuNfrFBaFDqI/T60YcAVtcDgCdw/3QNUJ/FiOb0rtWWGVkvMl5RDnhm2zHMF/klKo/DPlaE8V32rbywrGsYl54RXEeUXYUUVrDTf10nmFROQsfXcszNSUFHcN80SXcD3/+U4jvT9zGa0M6wMNg3A9bE2VNx2a7YG/klNbgelEV7olpZf+NE3aFIlGESyEUCjD/ka5YO+4eTOgfi45hvm4poACga4Q/N+NtVO82Ro+TTekBwM5zeXrXWROJchRsh56PVGzXzr+WRFs+RaLs2JnH4ulhJhJlYLTJwtZEsW7efICNRMWH+iKlSyiCfKQoqpRj76UCo7UlXDqvYRFFxeWuBYkoguApErEQLw6IQ3K71ni8t+nxLsN6qEWUYUrPmSKKjZi5s8B1NHwSUfll9hdRbCSKjdCw3OIiUZ56x1k3b4bhR5pL3Zmnjop1DPWFh0iIJzR/o6YMgUs4G5aGGw7akVeUS0EiiiB4TPqQDvjP5Hvh72n6zbdjqC/Xpffpvmvc8QIniqgHu4QhfUgHzHu4S7Pft7ugHf3ifK+oXDu6lbMkaLzRdpy5o3fccOQLi0Ag4FVKL7esFhXyeoiFAi5y9FQfdc3in5mFuF2iL35ZsWjNKKBYNxlz01IgEUUQLoxAIMAbqR0BAGv+uIY//ikE4NxIlEQsxKuD402aiBLWwYqIO2U1DY4UcTT2dCtnGdM3CmKhACduluBCThl33JyIAvhlc/CPxh8qNsgbEk3KPSbIG/3iWoNhgO9P3NZbz0WirKmJ0oiym3erOasQgr+QiCIIF2dot3CMvVdt3Jm+5QwKymudKqKIphPkI4GnhwgMA65I3xkwDOOQmqgQPxlnmPvN4ZsAgLLqOm5aQptAUyKKjUQ5P0LDiqgOBsO1WQPdLcez9Yrmi20oLI8I8IRErDYjvePE3z1hHSSiCMINmDO8CzqF+eJulQLTt5xBQYXW24dwPQQCAS/qoirk9Vzxtz3TeQAwXjMPc/uZHJRWK7jHGewr5SwQdGnHpbn4EIlS78FQRD3YNRRhfjLkl8sxf8dFAOrRNrV17PDhhmuiREIBYjTzE/kQdSMsQyKKINwAmYcInzzdC54eIhy6dpebMUaRKNeFD15RbFG5n0xsUtg0hd7Rgegc7gd5vQrfn7hlNHjYEN10nuEQ8uZGG4nS90GTikVYPjoBAoE6pbf9dA5XD+UhEnDzSRtCO4jY+VE3wjIkogjCTWgf4oNFad24n4UC9xqF09JoyxWXN4+Iqq1TorZO3z7AEak8FoFAwEWjvj2SzQmGqEBPk+vbtvJCoJcHautU+GjPP3bfj7WoVNrOPEOHfgDoFxeEVx6IBwC89dN5nM4uBaAuKre2W7UdFZe7DCSiCMKNeKJ3GzzWMxIA0NrHfmM6iOYnWpPSYf2IHElJlQIPfvQnHvhwPyp0rDIc4Vauy8jESPjJxMgurubcvs1FosQiId55tDsA4NP91/CnpomiubldUoOaOiUkIiGizez11Qfao29sK1QplJj54zkA1hWVs1AkynUgEUUQbsaitG4YfU8U3niwo7O3QjQB1rH+j38K8d8zOQ67H4ZhMHPbOWQXV+NOWa3eIF1HuJXr4ikRYbTGGsCcW7kuw7qH45kkTRPF99rav+aETeXFhfhALDL9ESoWCbHqqZ4I9PJAhVxdYB7gZf1QajZ1SSKK/5CIIgg3w1sqxvtP9MCTfaIaXkzwlm6R/pg6qD0AYNa288jMd0xEasvxW9h9MZ/7+csDWZytgiPTeSxj743WG4RtSUQBwNsj1E0URZUKvLblTLPbAFwxUw9lSJi/DMufTOR+bmXDHNLYIPW5+eTQTpiGRBRBEARPeW1IB/SLa41qhRJTNp1Clby+4RvZwLXCSiz4+W8AwIwHOyDEV4q88lrsOKs2wcwrU1tlOCqdBwDRrb0xsEMw97O5dB6LbhPFwat38dn+qw7bmykyzdgbmGJQpxC8eH87ANpxSNYQ6OXBGeye1/HRIvgHiSiCIAieIhIKsGpMT4T6SXG1oBKztp0Hw9gn8qKoV2H6d2dQU6dEv7jW+L+B7TGhfywAYO2f18AwjMPTeSzj+sUAAKRioVWCrX2IDxaO7AoAWL7nHxy+dteR29Pjihl7A3PMfKgTdr36L/zfwPZW34dAIECfGHU6d/I3J3DiRrHtGyWaBRJRBEEQPCbIR4pPnu4FkVCAHWfv4NsjN+1y3uV7/sH5nDIEeHlg+ZOJEAoFeDqpLXykYvyTX4n9VwqbJZ0HAAPig/FGake893h3q5shnujdBo/2jISKASZuPI5D14ocukcAqFeqOO+mjlaKKIFAgC4RfpyzubUseawHEtr4o7S6Dk9/cRQ7z+U2eJuy6jqkbzmDj/b8YzexTViGRBRBEATP6RPTCjOHdgIAzP/5b4z+/DBW7c3EiRvFjfJM+iuzEJ//qZ61+N5jPTiR5O/pgTF91bV0n+6/iqJKx6fzAEAoFODlQe3xaE/Tg7ZNIRAI8O6j3fGv+CBUK5SYsP449l8pcOAugZvF1VDUq+DpIUIbM1YM9iLYV4r/TL4XKZ1DoahX4eXNp7Duz+tmxVFZdR3GfnkU207nYOXeTPxHp0GAcBwkogiCIFyAF/4Vi8d6RkKpYnA0qxjL9/yDJ9YcRsKC3/DWT+f1rAksce52KV765iQYRj00d2i3ML3rn78vFmKhAMdvlIBh1CaRrW0oim5OPCUirBt3D1I6h0Ber8Kkr09g98W8Bm9XXKXgUpW2wNZDxYf6QNgM9iFeEjE+f7Y356f1zq5LeP37s0ZdiayAOp9TBommY3DBzxdxKbfc4Xts6QgYivk5jPLycvj7+6OsrAx+fn7O3g5BEC4OwzDIKqrCoWt3cfjaXRy+fhfFmuG2kQGe+OCJHujXPsjs7TPzK/Dk54dRUl2H5HatsX5CH8g8jJ3IX//+LH48dZs778GZDzjmAdkJRb0Kr205g53ncyESCjDroU4I9ZNxBqJVCiVu3q3GtYJKXC2s5J6ze9u1wrjkGAzpEgoPM3YFuqz8PRMf/f4PHu/VBsueTHD0w+JgGAZfHsjCO7sugWEAb4kI/zeoPSbeFwt5nYoTUK28Jdj0QhKWZlzGviuFaBfsjZ+n3gdvK53SCS3Wfn6TiHIgJKIIgnAkKhWDw9fvYta285zP0rjkaMx8qBO8JPofnLeKq/HEmkPIL5cjoY0/Nk261+wYkit5FUhd8ScAoFfbAGz7v/6OfSB2oF6pwps/nMO209Z5agkFAOuOEOonxdN9o/FQ9zC0C/I26//08uZT2HkuF7OHdcLk++PstXWrOXmzGAt/uYSzt0oBqAWur0yMy3kVaOUtweZJSegU5ofiKgWGrfwLeeW1eLRnJJY/mWC1WzqhhkQUDyARRRBEc1Alr8eSXy/h2yPZAIA2gZ5I6RyKrhF+6BbpjwAvDzy19ghu3q1GfIgPvn8xGYENpOgmrD+GfVcKMax7GD59pndzPIwmo1IxWPW/TOy/UgiZhxAyDxE8PUSQaWqY2of4IC5YfSmpVmDz0Wx8dzybmzUJABKxEB1DfdE53Bedw/3QMcwXHUN90dpHiiHL/0BmQSXWT+iDQR1DnPYYd5y9g/czLiNX4yjf2luCzZPu1bNROH6jGE+tPQKlisHSxy37xjEMg5o6pZHwbsmQiOIBJKIIgmhO/sosxJs/nOM+XA1pE+iJH17qZ1W3XWZ+Bd7+7wW88kA8+ltIEbo68nolMi7k4btjt3DudimqzJhbBvlIUFylgIoBDs18ABEBji0sb4gahRJfHriOEzdLMHtYZ5OWC6v3XcUHu69A5iHEQ93CEeDlgUAvCQK9PFApV+KqJr15raASlfJ6DOoYjPmPdEV0a28nPCJ+QSKKB5CIIgiiuamorcPvl/JxIaccF3LKcPFOOSrl9QjxlWLrS8n0AWkBlYpBdnE1LuWW41JuOf7OrUBmQQWyi6vBflIG+0pxbPZgl0iPqVQMnttw3KY5gxKxEFMGxGHKwDiuXk6lYvBPQQXO3y5DkK8UXcL9EOIrNfkcqFRMsxTdszAM45DfBYkoHkAiiiAIZ6NSMbhdUoMAbw/4yayf30ZoqVbUIzO/ElcLKtEt0t8m93Fnw0ba8spqUVJdh9JqBUqqFZCKRWgf4sNdGAZYvPNv/JWp9tuKauWJRxMjcT6nDCdvlqC8Vt8tv5W3BF3C/RDmL0NRpRwF5XIUVMhxt0qOCH9P9ItrjX7tW6NfXBBCfKXILKjE0et3cSSrGMezilFao99N6iEUoH2oL7pH+qFbhD+6RfqjQ6ivSX8tlYrBiZsl+Ol0Do5m3cXu6fdb1RhgCySieACJKIIgCMJVYBgGv17Iw8Kf/+aMVlm8JCJ0i/RHcZUC1wsrYcvIQh+pGJWNGFkkEQnRJcIPCW38kRAVgLatvPC/ywX475k7yCmt4dZtfL4vBuiMDrIHJKJ4AIkogiAIwtWoktdj3V/XkVVUhYQ2AegT0wqdw325rsXaOiX+ya/A33fKcbdKgWAfKYL9pAjxlaK1txRX8itw6FoRDl+7i/M5ZWAYwNNDhN7RgUiKbYWkdq2NzEqrFUpcyi3HhTtluJBThgs55SirMe995isVY2i3MDzaMxJJ7Vpb7XRvLSSieACJKIIgCKIlU1Zdh5zSGrQP8bFp9A3DqOvTzt4uw9lbpTh7qxRZRVXoFR2IR3tG4oFOISY9zuyFtZ/f1M9IEARBEIRD8PfygL+X7bV4AoEA0a29Ed3aG48kRDhgZ/aBxr4QBEEQBEE0Al6IqNWrVyMmJgYymQxJSUk4duyYxfVbt25Fp06dIJPJ0L17d+zatUvveoZhMHfuXISHh8PT0xMpKSnIzMzUW1NcXIxnnnkGfn5+CAgIwMSJE1FZWam3Zvfu3bj33nvh6+uL4OBgPP7447hx44ZdHjNBEARBEK6N00XUli1bkJ6ejnnz5uHUqVNISEhAamoqCgpMT+M+dOgQxowZg4kTJ+L06dNIS0tDWloaLly4wK1ZunQpVq1ahTVr1uDo0aPw9vZGamoqamu13QbPPPMMLl68iD179uCXX37Bn3/+icmTJ3PXZ2VlYeTIkXjggQdw5swZ7N69G0VFRXjssccc92QQBEEQBOE6ME6mb9++zMsvv8z9rFQqmYiICGbJkiUm1z/55JPM8OHD9Y4lJSUxL774IsMwDKNSqZiwsDDmgw8+4K4vLS1lpFIp85///IdhGIb5+++/GQDM8ePHuTW//vorIxAImJycHIZhGGbr1q2MWCxmlEolt2bHjh2MQCBgFAqFVY+trKyMAcCUlZVZtZ4gCIIgCOdj7ee3UyNRCoUCJ0+eREpKCndMKBQiJSUFh/+/vfuPibr+4wD+PDjuFJE7FbwTBcHC+YvsBGVo0/aFic5Ms1IZEZLTqbhEZ2Y201aKUDoVTastNTUVV2rSrOjQczg8EX8LiVMMUg6HhKD4k3t9/2h+1vmj8PhxHT0f22fA+/M6Pq97/nH32uc+d5eX99jb5OXlOdQDQGxsrFJfUlICm83mUKPT6RAZGanU5OXlQa/XIyIiQqmJiYmBh4cHrFYrACA8PBweHh7YsGED6uvrcf36dWzevBkxMTHw8uIH1hEREf3XuXSIqqysRH19PQwGg8O6wWCAzWZ77G1sNtvf1j/4+U81nTs7fnmkWq1Gx44dlZqQkBD8/PPPWLBgAbRaLfR6PX7//XdkZmY+8f7cuXMHNTU1DhsRERG1Ti6/JurfymazYcqUKUhMTER+fj4sFgs0Gg1ee+01yBM+Wis1NRU6nU7ZAgOf/K3ZRERE5N5cOkT5+fnB09MTFRUVDusVFRUwGo2PvY3RaPzb+gc//6nm4QvX79+/j6qqKqVm7dq10Ol0SE9Ph8lkwtChQ7FlyxaYzWblJb+Hvffee7h+/bqylZWVNSQGIiIickMuHaI0Gg3Cw8NhNpuVNbvdDrPZjKioqMfeJioqyqEeALKzs5X6kJAQGI1Gh5qamhpYrValJioqCtXV1SgoKFBqcnJyYLfbERkZCQCoq6uDh4djPJ6eD77R2v7Y3rRaLXx9fR02IiIiaqVa5jr3J9u+fbtotVrZuHGjFBYWytSpU0Wv14vNZhMRkYSEBJk/f75Sf+jQIVGr1fLpp59KUVGRLFq0SLy8vOT06dNKzbJly0Sv18uePXvk1KlTMmbMGAkJCZFbt24pNSNGjBCTySRWq1Vyc3MlNDRU4uLilP1ms1lUKpV8+OGHUlxcLAUFBRIbGyvdu3eXurq6Bt03vjuPiIjI/TT0+dvlQ5SISEZGhgQFBYlGo5FBgwbJ4cOHlX3Dhg2TxMREh/rMzEzp2bOnaDQa6du3r/zwww8O++12uyxcuFAMBoNotVqJjo6Wc+fOOdRcu3ZN4uLixMfHR3x9fSUpKUlqa2sdarZt2yYmk0natWsn/v7+8vLLL0tRUVGD7xeHKCIiIvfT0OdvfgFxM+IXEBMREbmfhj5/8915RERERE7gEEVERETkBLWrG2jNHrxSyg/dJCIich8Pnrf/6YonDlHNqLa2FgD4oZtERERuqLa2Fjqd7on7eWF5M7Lb7bhy5Qrat28PlUrVZP+3pqYGgYGBKCsr4wXrzYxZtxxm3XKYdcti3i2nqbIWEdTW1iIgIOCRz4z8K56JakYeHh7o1q1bs/1/fqBny2HWLYdZtxxm3bKYd8tpiqz/7gzUA7ywnIiIiMgJHKKIiIiInMAhyg1ptVosWrQIWq3W1a20esy65TDrlsOsWxbzbjktnTUvLCciIiJyAs9EERERETmBQxQRERGREzhEERERETmBQxQRERGREzhEuaG1a9ciODgYbdq0QWRkJI4cOeLqltxeamoqBg4ciPbt26Nz584YO3Yszp0751Bz+/ZtJCcno1OnTvDx8cGrr76KiooKF3XcOixbtgwqlQopKSnKGnNuWpcvX8Ybb7yBTp06oW3btggLC8PRo0eV/SKCDz74AF26dEHbtm0RExOD8+fPu7Bj91RfX4+FCxciJCQEbdu2xTPPPIOPPvrI4bvXmLVzDh48iNGjRyMgIAAqlQq7d+922N+QXKuqqhAfHw9fX1/o9XpMnjwZN27caHRvHKLczI4dOzBnzhwsWrQIx44dQ//+/REbG4urV6+6ujW3ZrFYkJycjMOHDyM7Oxv37t3D8OHDcfPmTaVm9uzZ2Lt3L3bu3AmLxYIrV65g3LhxLuzaveXn5+Pzzz/Hc88957DOnJvOH3/8gSFDhsDLywv79u1DYWEhli9fjg4dOig16enpWL16NdavXw+r1Yp27dohNjYWt2/fdmHn7ictLQ3r1q3DmjVrUFRUhLS0NKSnpyMjI0OpYdbOuXnzJvr374+1a9c+dn9Dco2Pj8fZs2eRnZ2NrKwsHDx4EFOnTm18c0JuZdCgQZKcnKz8XV9fLwEBAZKamurCrlqfq1evCgCxWCwiIlJdXS1eXl6yc+dOpaaoqEgASF5enqvadFu1tbUSGhoq2dnZMmzYMJk1a5aIMOem9u6778oLL7zwxP12u12MRqN88sknylp1dbVotVrZtm1bS7TYaowaNUreeusth7Vx48ZJfHy8iDDrpgJAdu3apfzdkFwLCwsFgOTn5ys1+/btE5VKJZcvX25UPzwT5Ubu3r2LgoICxMTEKGseHh6IiYlBXl6eCztrfa5fvw4A6NixIwCgoKAA9+7dc8i+V69eCAoKYvZOSE5OxqhRoxzyBJhzU/v+++8RERGB119/HZ07d4bJZMKXX36p7C8pKYHNZnPIW6fTITIyknk/pcGDB8NsNqO4uBgAcPLkSeTm5mLkyJEAmHVzaUiueXl50Ov1iIiIUGpiYmLg4eEBq9XaqOPzC4jdSGVlJerr62EwGBzWDQYDfv31Vxd11frY7XakpKRgyJAh6NevHwDAZrNBo9FAr9c71BoMBthsNhd06b62b9+OY8eOIT8//5F9zLlpXbx4EevWrcOcOXOwYMEC5Ofn4+2334ZGo0FiYqKS6eMeU5j305k/fz5qamrQq1cveHp6or6+HkuWLEF8fDwAMOtm0pBcbTYbOnfu7LBfrVajY8eOjc6eQxTRQ5KTk3HmzBnk5ua6upVWp6ysDLNmzUJ2djbatGnj6nZaPbvdjoiICCxduhQAYDKZcObMGaxfvx6JiYku7q51yczMxNatW/HNN9+gb9++OHHiBFJSUhAQEMCsWzG+nOdG/Pz84Onp+cg7lSoqKmA0Gl3UVesyc+ZMZGVlYf/+/ejWrZuybjQacffuXVRXVzvUM/unU1BQgKtXr2LAgAFQq9VQq9WwWCxYvXo11Go1DAYDc25CXbp0QZ8+fRzWevfujdLSUgBQMuVjSuO98847mD9/PiZOnIiwsDAkJCRg9uzZSE1NBcCsm0tDcjUajY+8+er+/fuoqqpqdPYcotyIRqNBeHg4zGazsma322E2mxEVFeXCztyfiGDmzJnYtWsXcnJyEBIS4rA/PDwcXl5eDtmfO3cOpaWlzP4pREdH4/Tp0zhx4oSyRUREID4+XvmdOTedIUOGPPJRHcXFxejevTsAICQkBEaj0SHvmpoaWK1W5v2U6urq4OHh+JTq6ekJu90OgFk3l4bkGhUVherqahQUFCg1OTk5sNvtiIyMbFwDjbosnVrc9u3bRavVysaNG6WwsFCmTp0qer1ebDabq1tza9OnTxedTicHDhyQ8vJyZaurq1Nqpk2bJkFBQZKTkyNHjx6VqKgoiYqKcmHXrcNf350nwpyb0pEjR0StVsuSJUvk/PnzsnXrVvH29pYtW7YoNcuWLRO9Xi979uyRU6dOyZgxYyQkJERu3brlws7dT2JionTt2lWysrKkpKREvvvuO/Hz85N58+YpNczaObW1tXL8+HE5fvy4AJAVK1bI8ePH5bfffhORhuU6YsQIMZlMYrVaJTc3V0JDQyUuLq7RvXGIckMZGRkSFBQkGo1GBg0aJIcPH3Z1S24PwGO3DRs2KDW3bt2SGTNmSIcOHcTb21teeeUVKS8vd13TrcTDQxRzblp79+6Vfv36iVarlV69eskXX3zhsN9ut8vChQvFYDCIVquV6OhoOXfunIu6dV81NTUya9YsCQoKkjZt2kiPHj3k/ffflzt37ig1zNo5+/fvf+zjc2Jioog0LNdr165JXFyc+Pj4iK+vryQlJUltbW2je1OJ/OXjVImIiIioQXhNFBEREZETOEQREREROYFDFBEREZETOEQREREROYFDFBEREZETOEQREREROYFDFBEREZETOEQRETWj4OBgrFy50tVtEFEz4BBFRK3GpEmTMHbsWADAiy++iJSUlBY79saNG6HX6x9Zz8/Px9SpU1usDyJqOWpXN0BE9G929+5daDQap2/v7+/fhN0Q0b8Jz0QRUaszadIkWCwWrFq1CiqVCiqVCpcuXQIAnDlzBiNHjoSPjw8MBgMSEhJQWVmp3PbFF1/EzJkzkZKSAj8/P8TGxgIAVqxYgbCwMLRr1w6BgYGYMWMGbty4AQA4cOAAkpKScP36deV4ixcvBvDoy3mlpaUYM2YMfHx84Ovri/Hjx6OiokLZv3jxYjz//PPYvHkzgoODodPpMHHiRNTW1jZvaET01DhEEVGrs2rVKkRFRWHKlCkoLy9HeXk5AgMDUV1djf/9738wmUw4evQofvzxR1RUVGD8+PEOt9+0aRM0Gg0OHTqE9evXAwA8PDywevVqnD17Fps2bUJOTg7mzZsHABg8eDBWrlwJX19f5Xhz5859pC+73Y4xY8agqqoKFosF2dnZuHjxIiZMmOBQd+HCBezevRtZWVnIysqCxWLBsmXLmiktInIWX84jolZHp9NBo9HA29sbRqNRWV+zZg1MJhOWLl2qrH311VcIDAxEcXExevbsCQAIDQ1Fenq6w//86/VVwcHB+PjjjzFt2jR89tln0Gg00Ol0UKlUDsd7mNlsxunTp1FSUoLAwEAAwNdff42+ffsiPz8fAwcOBPDnsLVx40a0b98eAJCQkACz2YwlS5Y0LhgialI8E0VE/xknT57E/v374ePjo2y9evUC8OfZnwfCw8Mfue0vv/yC6OhodO3aFe3bt0dCQgKuXbuGurq6Bh+/qKgIgYGBygAFAH369IFer0dRUZGyFhwcrAxQANClSxdcvXr1qe4rETU/nokiov+MGzduYPTo0UhLS3tkX5cuXZTf27Vr57Dv0qVLeOmllzB9+nQsWbIEHTt2RG5uLiZPnoy7d+/C29u7Sfv08vJy+FulUsFutzfpMYio8ThEEVGrpNFoUF9f77A2YMAAfPvttwgODoZa3fCHv4KCAtjtdixfvhweHn+ewM/MzPzH4z2sd+/eKCsrQ1lZmXI2qrCwENXV1ejTp0+D+yGifwe+nEdErVJwcDCsVisuXbqEyspK2O12JCcno6qqCnFxccjPz8eFCxfw008/ISkp6W8HoGeffRb37t1DRkYGLl68iM2bNysXnP/1eDdu3IDZbEZlZeVjX+aLiYlBWFgY4uPjcezYMRw5cgRvvvkmhg0bhoiIiCbPgIiaF4coImqV5s6dC09PT/Tp0wf+/v4oLS1FQEAADh06hPr6egwfPhxhYWFISUmBXq9XzjA9Tv/+/bFixQqkpaWhX79+2Lp1K1JTUx1qBg8ejGnTpmHChAnw9/d/5MJ04M+X5fbs2YMOHTpg6NChiImJQY8ePbBjx44mv/9E1PxUIiKuboKIiIjI3fBMFBEREZETOEQREREROYFDFBEREZETOEQREREROYFDFBEREZETOEQREREROYFDFBEREZETOEQREREROYFDFBEREZETOEQREREROYFDFBEREZETOEQREREROeH/vlcn4HgM4BQAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import time\n",
    "import numpy as np\n",
    "import networkx as nx\n",
    "import pennylane as qml\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Define your AGN graph structure\n",
    "G = nx.hexagonal_lattice_graph(3, 3)  # Adjust dimensions as needed for scalability\n",
    "nx.set_node_attributes(G, values=0, name=\"state\")  # Initialize node states\n",
    "\n",
    "# Define the quantum device and circuits\n",
    "dev = qml.device(\"default.qubit\", wires=4)\n",
    "\n",
    "@qml.qnode(dev)\n",
    "def quantum_decision_circuit(theta):\n",
    "    qml.RX(theta[0], wires=0)\n",
    "    qml.RY(theta[1], wires=1)\n",
    "    qml.CNOT(wires=[0, 1])\n",
    "    qml.RY(theta[2], wires=2)\n",
    "    qml.CNOT(wires=[1, 2])\n",
    "    qml.RX(theta[3], wires=3)\n",
    "    return qml.probs(wires=[0, 1, 2, 3])\n",
    "\n",
    "@qml.qnode(dev)\n",
    "def complex_quantum_circuit(theta):\n",
    "    qml.Hadamard(wires=0)\n",
    "    qml.RX(theta[0], wires=0)\n",
    "    qml.CNOT(wires=[0, 1])\n",
    "    qml.RY(theta[1], wires=1)\n",
    "    qml.CRX(theta[2], wires=[0, 1])  # Control qubit is 0, target qubit is 1\n",
    "    qml.T(wires=2)\n",
    "    qml.CNOT(wires=[2, 3])\n",
    "    return qml.probs(wires=[0, 1, 2, 3])\n",
    "\n",
    "# Define tensor padding function\n",
    "def pad_tensor(tensor, target_shape, pad_value=0):\n",
    "    original_shape = tensor.shape\n",
    "    padded_tensor = np.full(target_shape, pad_value, dtype=tensor.dtype)\n",
    "    slices = tuple(slice(0, min(original_shape[dim], target_shape[dim])) for dim in range(len(target_shape)))\n",
    "    padded_tensor[slices] = tensor\n",
    "    return padded_tensor\n",
    "\n",
    "# Define benchmarking function with data collection for analysis\n",
    "def run_benchmark(iterations=100, use_complex_circuit=False):\n",
    "    exec_times = []\n",
    "    for _ in range(iterations):\n",
    "        # Generate random theta values for the quantum circuit\n",
    "        theta = np.random.rand(4)\n",
    "        \n",
    "        # Select circuit to run based on the argument\n",
    "        circuit = complex_quantum_circuit if use_complex_circuit else quantum_decision_circuit\n",
    "        \n",
    "        # Start timing\n",
    "        start_time = time.time()\n",
    "        \n",
    "        # Run the selected quantum circuit\n",
    "        probabilities = circuit(theta)\n",
    "        \n",
    "        # Map probabilities to AGN nodes\n",
    "        for i, node in enumerate(G.nodes()):\n",
    "            G.nodes[node][\"state\"] = probabilities[i % len(probabilities)]\n",
    "        \n",
    "        # End timing\n",
    "        end_time = time.time()\n",
    "        \n",
    "        # Calculate time for this iteration and store it\n",
    "        exec_times.append(end_time - start_time)\n",
    "    \n",
    "    avg_time = np.mean(exec_times)\n",
    "    print(f\"Average execution time per iteration: {avg_time:.4f} seconds\")\n",
    "    \n",
    "    # Plot execution times for each iteration\n",
    "    plt.plot(range(iterations), exec_times, label=\"Execution Time per Iteration\")\n",
    "    plt.xlabel(\"Iteration\")\n",
    "    plt.ylabel(\"Execution Time (s)\")\n",
    "    plt.title(\"AGN Execution Time Benchmark\")\n",
    "    plt.legend()\n",
    "    plt.show()\n",
    "\n",
    "# Example usage of padding with real-time data\n",
    "real_time_data = np.random.rand(2, 3)  # Simulate variable input size\n",
    "padded_data = pad_tensor(real_time_data, (4, 4))\n",
    "print(\"Padded Data:\\n\", padded_data)\n",
    "\n",
    "# Run the benchmark with the simple circuit\n",
    "print(\"Running benchmark with simple circuit:\")\n",
    "run_benchmark(iterations=100, use_complex_circuit=False)\n",
    "\n",
    "# Run the benchmark with the complex circuit\n",
    "print(\"\\nRunning benchmark with complex circuit:\")\n",
    "run_benchmark(iterations=100, use_complex_circuit=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a larger AGN graph structure for scalability testing\n",
    "G_large = nx.hexagonal_lattice_graph(5, 5)  # Try a 5x5 hexagonal lattice\n",
    "nx.set_node_attributes(G_large, values=0, name=\"state\")  # Initialize node states to 0\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "noise_dev = qml.device(\"default.mixed\", wires=4)\n",
    "\n",
    "@qml.qnode(noise_dev)\n",
    "def noisy_quantum_circuit(theta):\n",
    "    qml.RX(theta[0], wires=0)\n",
    "    qml.DepolarizingChannel(0.1, wires=0)  # Add depolarizing noise\n",
    "    qml.RY(theta[1], wires=1)\n",
    "    qml.CNOT(wires=[0, 1])\n",
    "    qml.RY(theta[2], wires=2)\n",
    "    qml.DepolarizingChannel(0.05, wires=2)\n",
    "    qml.CNOT(wires=[1, 2])\n",
    "    qml.RX(theta[3], wires=3)\n",
    "    return qml.probs(wires=[0, 1, 2, 3])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define a more complex quantum circuit with additional qubits and gates\n",
    "dev_extended = qml.device(\"default.qubit\", wires=6)\n",
    "\n",
    "@qml.qnode(dev_extended)\n",
    "def extended_quantum_circuit(theta):\n",
    "    qml.Hadamard(wires=0)\n",
    "    qml.CRX(theta[0], wires=[0, 1])\n",
    "    qml.CRY(theta[1], wires=[1, 2])\n",
    "    qml.CZ(wires=[2, 3])\n",
    "    qml.RZ(theta[2], wires=4)\n",
    "    qml.CNOT(wires=[4, 5])\n",
    "    return qml.probs(wires=[0, 1, 2, 3, 4, 5])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "def run_consistency_test(theta_values, expected_outcome, iterations=100):\n",
    "    consistent_count = 0\n",
    "    for _ in range(iterations):\n",
    "        result = quantum_decision_circuit(theta_values)\n",
    "        decision = np.argmax(result)\n",
    "        if decision == expected_outcome:\n",
    "            consistent_count += 1\n",
    "    \n",
    "    consistency_rate = (consistent_count / iterations) * 100\n",
    "    print(f\"Consistency Rate: {consistency_rate:.2f}%\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: qiskit in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (1.2.4)\n",
      "Requirement already satisfied: rustworkx>=0.15.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.15.1)\n",
      "Requirement already satisfied: numpy<3,>=1.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.23.5)\n",
      "Requirement already satisfied: scipy>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.14.1)\n",
      "Requirement already satisfied: sympy>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.13.1)\n",
      "Requirement already satisfied: dill>=0.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.3.9)\n",
      "Requirement already satisfied: python-dateutil>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (2.9.0.post0)\n",
      "Requirement already satisfied: stevedore>=3.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (5.3.0)\n",
      "Requirement already satisfied: typing-extensions in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (4.12.2)\n",
      "Requirement already satisfied: symengine<0.14,>=0.11 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.13.0)\n",
      "Requirement already satisfied: six>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from python-dateutil>=2.8.0->qiskit) (1.16.0)\n",
      "Requirement already satisfied: pbr>=2.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit) (6.1.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from sympy>=1.3->qiskit) (1.3.0)\n",
      "Requirement already satisfied: qiskit-aer in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (0.15.1)\n",
      "Requirement already satisfied: qiskit>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-aer) (1.2.4)\n",
      "Requirement already satisfied: numpy>=1.16.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-aer) (1.23.5)\n",
      "Requirement already satisfied: scipy>=1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-aer) (1.14.1)\n",
      "Requirement already satisfied: psutil>=5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-aer) (6.1.0)\n",
      "Requirement already satisfied: rustworkx>=0.15.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-aer) (0.15.1)\n",
      "Requirement already satisfied: sympy>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-aer) (1.13.1)\n",
      "Requirement already satisfied: dill>=0.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-aer) (0.3.9)\n",
      "Requirement already satisfied: python-dateutil>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-aer) (2.9.0.post0)\n",
      "Requirement already satisfied: stevedore>=3.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-aer) (5.3.0)\n",
      "Requirement already satisfied: typing-extensions in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-aer) (4.12.2)\n",
      "Requirement already satisfied: symengine<0.14,>=0.11 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-aer) (0.13.0)\n",
      "Requirement already satisfied: six>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from python-dateutil>=2.8.0->qiskit>=1.1.0->qiskit-aer) (1.16.0)\n",
      "Requirement already satisfied: pbr>=2.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit>=1.1.0->qiskit-aer) (6.1.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from sympy>=1.3->qiskit>=1.1.0->qiskit-aer) (1.3.0)\n",
      "Requirement already satisfied: qiskit-ibmq-provider in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (0.20.2)\n",
      "Requirement already satisfied: qiskit-terra>=0.18.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (0.46.3)\n",
      "Requirement already satisfied: requests>=2.19 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (2.32.3)\n",
      "Requirement already satisfied: requests-ntlm<=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (1.1.0)\n",
      "Requirement already satisfied: numpy<1.24 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (1.23.5)\n",
      "Requirement already satisfied: urllib3>=1.21.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (2.2.3)\n",
      "Requirement already satisfied: python-dateutil>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (2.9.0.post0)\n",
      "Requirement already satisfied: websocket-client>=1.5.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (1.8.0)\n",
      "Requirement already satisfied: websockets>=10.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibmq-provider) (13.1)\n",
      "Requirement already satisfied: six>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from python-dateutil>=2.8.0->qiskit-ibmq-provider) (1.16.0)\n",
      "Requirement already satisfied: rustworkx>=0.13.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (0.15.1)\n",
      "Requirement already satisfied: ply>=3.10 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (3.11)\n",
      "Requirement already satisfied: psutil>=5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (6.1.0)\n",
      "Requirement already satisfied: scipy>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (1.14.1)\n",
      "Requirement already satisfied: sympy>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (1.13.1)\n",
      "Requirement already satisfied: dill>=0.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (0.3.9)\n",
      "Requirement already satisfied: stevedore>=3.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (5.3.0)\n",
      "Requirement already satisfied: symengine>=0.11 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (0.13.0)\n",
      "Requirement already satisfied: typing-extensions in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-terra>=0.18.0->qiskit-ibmq-provider) (4.12.2)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibmq-provider) (3.4.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibmq-provider) (3.10)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibmq-provider) (2024.8.30)\n",
      "Requirement already satisfied: ntlm-auth>=1.0.2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm<=1.1.0->qiskit-ibmq-provider) (1.5.0)\n",
      "Requirement already satisfied: cryptography>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm<=1.1.0->qiskit-ibmq-provider) (43.0.3)\n",
      "Requirement already satisfied: cffi>=1.12 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cryptography>=1.3->requests-ntlm<=1.1.0->qiskit-ibmq-provider) (1.17.1)\n",
      "Requirement already satisfied: pbr>=2.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit-terra>=0.18.0->qiskit-ibmq-provider) (6.1.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from sympy>=1.3->qiskit-terra>=0.18.0->qiskit-ibmq-provider) (1.3.0)\n",
      "Requirement already satisfied: pycparser in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=1.3->requests-ntlm<=1.1.0->qiskit-ibmq-provider) (2.22)\n",
      "Collecting qiskit-ibm-runtime\n",
      "  Downloading qiskit_ibm_runtime-0.32.0-py3-none-any.whl.metadata (19 kB)\n",
      "Requirement already satisfied: requests>=2.19 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.32.3)\n",
      "Requirement already satisfied: requests-ntlm>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.1.0)\n",
      "Requirement already satisfied: numpy>=1.13 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.23.5)\n",
      "Requirement already satisfied: urllib3>=1.21.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.2.3)\n",
      "Requirement already satisfied: python-dateutil>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.9.0.post0)\n",
      "Requirement already satisfied: websocket-client>=1.5.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.8.0)\n",
      "Collecting ibm-platform-services>=0.22.6 (from qiskit-ibm-runtime)\n",
      "  Downloading ibm_platform_services-0.59.0-py3-none-any.whl.metadata (9.0 kB)\n",
      "Collecting pydantic>=2.5.0 (from qiskit-ibm-runtime)\n",
      "  Downloading pydantic-2.9.2-py3-none-any.whl.metadata (149 kB)\n",
      "Requirement already satisfied: qiskit>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.2.4)\n",
      "Collecting ibm-cloud-sdk-core<4.0.0,>=3.22.0 (from ibm-platform-services>=0.22.6->qiskit-ibm-runtime)\n",
      "  Downloading ibm_cloud_sdk_core-3.22.0-py3-none-any.whl.metadata (8.6 kB)\n",
      "Collecting annotated-types>=0.6.0 (from pydantic>=2.5.0->qiskit-ibm-runtime)\n",
      "  Downloading annotated_types-0.7.0-py3-none-any.whl.metadata (15 kB)\n",
      "Collecting pydantic-core==2.23.4 (from pydantic>=2.5.0->qiskit-ibm-runtime)\n",
      "  Downloading pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl.metadata (6.6 kB)\n",
      "Requirement already satisfied: typing-extensions>=4.6.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pydantic>=2.5.0->qiskit-ibm-runtime) (4.12.2)\n",
      "Requirement already satisfied: six>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from python-dateutil>=2.8.0->qiskit-ibm-runtime) (1.16.0)\n",
      "Requirement already satisfied: rustworkx>=0.15.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-ibm-runtime) (0.15.1)\n",
      "Requirement already satisfied: scipy>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-ibm-runtime) (1.14.1)\n",
      "Requirement already satisfied: sympy>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-ibm-runtime) (1.13.1)\n",
      "Requirement already satisfied: dill>=0.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-ibm-runtime) (0.3.9)\n",
      "Requirement already satisfied: stevedore>=3.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-ibm-runtime) (5.3.0)\n",
      "Requirement already satisfied: symengine<0.14,>=0.11 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit>=1.1.0->qiskit-ibm-runtime) (0.13.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (3.4.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (3.10)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (2024.8.30)\n",
      "Requirement already satisfied: ntlm-auth>=1.0.2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-runtime) (1.5.0)\n",
      "Requirement already satisfied: cryptography>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-runtime) (43.0.3)\n",
      "Requirement already satisfied: cffi>=1.12 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-runtime) (1.17.1)\n",
      "Collecting PyJWT<3.0.0,>=2.8.0 (from ibm-cloud-sdk-core<4.0.0,>=3.22.0->ibm-platform-services>=0.22.6->qiskit-ibm-runtime)\n",
      "  Downloading PyJWT-2.9.0-py3-none-any.whl.metadata (3.0 kB)\n",
      "Requirement already satisfied: pbr>=2.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit>=1.1.0->qiskit-ibm-runtime) (6.1.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from sympy>=1.3->qiskit>=1.1.0->qiskit-ibm-runtime) (1.3.0)\n",
      "Requirement already satisfied: pycparser in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-runtime) (2.22)\n",
      "Downloading qiskit_ibm_runtime-0.32.0-py3-none-any.whl (3.0 MB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
      "\u001b[?25hDownloading ibm_platform_services-0.59.0-py3-none-any.whl (340 kB)\n",
      "Downloading pydantic-2.9.2-py3-none-any.whl (434 kB)\n",
      "Downloading pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
      "\u001b[?25hDownloading annotated_types-0.7.0-py3-none-any.whl (13 kB)\n",
      "Downloading ibm_cloud_sdk_core-3.22.0-py3-none-any.whl (69 kB)\n",
      "Downloading PyJWT-2.9.0-py3-none-any.whl (22 kB)\n",
      "Installing collected packages: PyJWT, pydantic-core, annotated-types, pydantic, ibm-cloud-sdk-core, ibm-platform-services, qiskit-ibm-runtime\n",
      "Successfully installed PyJWT-2.9.0 annotated-types-0.7.0 ibm-cloud-sdk-core-3.22.0 ibm-platform-services-0.59.0 pydantic-2.9.2 pydantic-core-2.23.4 qiskit-ibm-runtime-0.32.0\n"
     ]
    }
   ],
   "source": [
    "!pip install qiskit\n",
    "!pip install qiskit-aer\n",
    "!pip install qiskit-ibmq-provider\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "Qiskit is installed in an invalid environment that has both Qiskit >=1.0 and an earlier version. You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit <1.0 and >=1.0. Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. Qiskit unfortunately cannot enforce this requirement during environment resolution. See https://qisk.it/packaging-1-0 for more detail.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m QuantumCircuit\n\u001b[1;32m      2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexecute_function\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m execute\n\u001b[1;32m      3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mproviders\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mibmq\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m IBMQ\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/__init__.py:38\u001b[0m\n\u001b[1;32m     36\u001b[0m     _suppress_error \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39menviron\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQISKIT_SUPPRESS_1_0_IMPORT_ERROR\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m1\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     37\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mint\u001b[39m(_major) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _suppress_error:\n\u001b[0;32m---> 38\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\n\u001b[1;32m     39\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQiskit is installed in an invalid environment that has both Qiskit >=1.0\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     40\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m and an earlier version.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     41\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m You should create a new virtual environment, and ensure that you do not mix\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     42\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m dependencies between Qiskit <1.0 and >=1.0.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     43\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Any packages that depend on \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mqiskit-terra\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m are not compatible with Qiskit 1.0 and\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     44\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m will need to be updated.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     45\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Qiskit unfortunately cannot enforce this requirement during environment resolution.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     46\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m See https://qisk.it/packaging-1-0 for more detail.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     47\u001b[0m         )\n\u001b[1;32m     49\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_accelerate\u001b[39;00m\n\u001b[1;32m     50\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_numpy_compat\u001b[39;00m\n",
      "\u001b[0;31mImportError\u001b[0m: Qiskit is installed in an invalid environment that has both Qiskit >=1.0 and an earlier version. You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit <1.0 and >=1.0. Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. Qiskit unfortunately cannot enforce this requirement during environment resolution. See https://qisk.it/packaging-1-0 for more detail."
     ]
    }
   ],
   "source": [
    "from qiskit import QuantumCircuit\n",
    "from qiskit.execute_function import execute\n",
    "from qiskit.providers.ibmq import IBMQ\n",
    "from qiskit_aer import Aer\n",
    "\n",
    "IBMQ.save_account('86a3bf838145fe6863cd15adf39b4678715f07c28e66cf2e1e3c7a9f9020a4f4215b71b9c664db90690e99ed2760c6e973c993257ace55c7ae6d5dfacd2d13fc')\n",
    "\n",
    "\n",
    "\n",
    "# Save your IBMQ account credentials (only needs to be done once)\n",
    "# Replace 'YOUR_API_TOKEN' with your actual IBM Quantum Experience API token\n",
    "IBMQ.save_account('86a3bf838145fe6863cd15adf39b4678715f07c28e66cf2e1e3c7a9f9020a4f4215b71b9c664db90690e99ed2760c6e973c993257ace55c7ae6d5dfacd2d13fc')\n",
    "\n",
    "# Load IBMQ account and select backend\n",
    "IBMQ.load_account()\n",
    "provider = IBMQ.get_provider('ibm-q')\n",
    "backend = provider.get_backend('ibm_brisbane')\n",
    "\n",
    "# Define a simple Qiskit quantum circuit\n",
    "def qiskit_circuit(theta):\n",
    "    qc = QuantumCircuit(4)\n",
    "    qc.rx(theta[0], 0)\n",
    "    qc.ry(theta[1], 1)\n",
    "    qc.cx(0, 1)\n",
    "    qc.ry(theta[2], 2)\n",
    "    qc.cx(1, 2)\n",
    "    qc.rx(theta[3], 3)\n",
    "    qc.measure_all()\n",
    "    return qc\n",
    "\n",
    "# Run on IBM Q backend\n",
    "theta_values = [0.3, 0.7, 1.2, 0.5]\n",
    "qc = qiskit_circuit(theta_values)\n",
    "job = execute(qc, backend, shots=1024)\n",
    "result = job.result()\n",
    "counts = result.get_counts(qc)\n",
    "print(\"Qiskit simulation results:\", counts)\n",
    "\n",
    "# Optionally, run on Aer simulator\n",
    "aer_backend = Aer.get_backend('qasm_simulator')\n",
    "aer_job = execute(qc, aer_backend, shots=1024)\n",
    "aer_result = aer_job.result()\n",
    "aer_counts = aer_result.get_counts(qc)\n",
    "print(\"Aer simulation results:\", aer_counts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "Qiskit is installed in an invalid environment that has both Qiskit >=1.0 and an earlier version. You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit <1.0 and >=1.0. Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. Qiskit unfortunately cannot enforce this requirement during environment resolution. See https://qisk.it/packaging-1-0 for more detail.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mproviders\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mibmq\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m IBMQ\n\u001b[1;32m      5\u001b[0m IBMQ\u001b[38;5;241m.\u001b[39msave_account(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m86a3bf838145fe6863cd15adf39b4678715f07c28e66cf2e1e3c7a9f9020a4f4215b71b9c664db90690e99ed2760c6e973c993257ace55c7ae6d5dfacd2d13fc\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m      8\u001b[0m \u001b[38;5;66;03m# Load account and check available backends\u001b[39;00m\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/__init__.py:38\u001b[0m\n\u001b[1;32m     36\u001b[0m     _suppress_error \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39menviron\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQISKIT_SUPPRESS_1_0_IMPORT_ERROR\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m1\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     37\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mint\u001b[39m(_major) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _suppress_error:\n\u001b[0;32m---> 38\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\n\u001b[1;32m     39\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQiskit is installed in an invalid environment that has both Qiskit >=1.0\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     40\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m and an earlier version.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     41\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m You should create a new virtual environment, and ensure that you do not mix\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     42\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m dependencies between Qiskit <1.0 and >=1.0.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     43\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Any packages that depend on \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mqiskit-terra\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m are not compatible with Qiskit 1.0 and\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     44\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m will need to be updated.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     45\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Qiskit unfortunately cannot enforce this requirement during environment resolution.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     46\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m See https://qisk.it/packaging-1-0 for more detail.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     47\u001b[0m         )\n\u001b[1;32m     49\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_accelerate\u001b[39;00m\n\u001b[1;32m     50\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_numpy_compat\u001b[39;00m\n",
      "\u001b[0;31mImportError\u001b[0m: Qiskit is installed in an invalid environment that has both Qiskit >=1.0 and an earlier version. You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit <1.0 and >=1.0. Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. Qiskit unfortunately cannot enforce this requirement during environment resolution. See https://qisk.it/packaging-1-0 for more detail."
     ]
    }
   ],
   "source": [
    "from qiskit.providers.ibmq import IBMQ\n",
    "\n",
    "\n",
    "\n",
    "IBMQ.save_account('86a3bf838145fe6863cd15adf39b4678715f07c28e66cf2e1e3c7a9f9020a4f4215b71b9c664db90690e99ed2760c6e973c993257ace55c7ae6d5dfacd2d13fc')\n",
    "\n",
    "\n",
    "# Load account and check available backends\n",
    "IBMQ.load_account()\n",
    "provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')\n",
    "print(provider.backends())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "ibmqfactory.load_account:WARNING:2024-11-01 20:26:27,158: Credentials are already in use. The existing account in the session will be replaced.\n",
      "/var/folders/11/rgx5c08d3v573lbh0msqtrqw0000gp/T/ipykernel_9370/2896483965.py:11: DeprecationWarning: The method ``qiskit.providers.provider.ProviderV1.get_backend()`` is deprecated as of qiskit 1.1. It will be removed no earlier than 3 months after the release date. The abstract Provider and ProviderV1 classes are deprecated and will  be removed in 2.0. You can just remove it as the parent class and a `get_backend` method that returns the backends from `self.backend`.\n",
      "  backend = provider.get_backend('ibm_brisbane')\n",
      "/var/folders/11/rgx5c08d3v573lbh0msqtrqw0000gp/T/ipykernel_9370/2896483965.py:28: DeprecationWarning: The function ``qiskit.execute_function.execute()`` is deprecated as of qiskit 0.46.0. It will be removed in the Qiskit 1.0 release. This function combines ``transpile`` and ``backend.run``, which is covered by ``Sampler`` :mod:`~qiskit.primitives`. Alternatively, you can also run :func:`.transpile` followed by ``backend.run()``.\n",
      "  job = execute(qc, backend, shots=1024)\n"
     ]
    },
    {
     "ename": "RequestsApiError",
     "evalue": "'400 Client Error: Bad Request for url: https://api.quantum.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/devices/ibm_brisbane/properties?version=1. qiskit-ibmq-provider is no longer supported. Refer to the migration guide at https://docs.quantum.ibm.com/api/migration-guides/qiskit-runtime-from-ibmq-provider for instructions on how to migrate existing code to Qiskit Runtime primitives., Error code: 2418.'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mHTTPError\u001b[0m                                 Traceback (most recent call last)",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/providers/ibmq/api/session.py:278\u001b[0m, in \u001b[0;36mRetrySession.request\u001b[0;34m(self, method, url, bare, **kwargs)\u001b[0m\n\u001b[1;32m    277\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mrequest(method, final_url, headers\u001b[38;5;241m=\u001b[39mheaders, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m--> 278\u001b[0m     \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    279\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m RequestException \u001b[38;5;28;01mas\u001b[39;00m ex:\n\u001b[1;32m    280\u001b[0m     \u001b[38;5;66;03m# Wrap the requests exceptions into a IBM Q custom one, for\u001b[39;00m\n\u001b[1;32m    281\u001b[0m     \u001b[38;5;66;03m# compatibility.\u001b[39;00m\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/requests/models.py:1024\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m   1023\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[0;32m-> 1024\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
      "\u001b[0;31mHTTPError\u001b[0m: 400 Client Error: Bad Request for url: https://api.quantum.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/devices/ibm_brisbane/properties?version=1",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[0;31mRequestsApiError\u001b[0m                          Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[35], line 28\u001b[0m\n\u001b[1;32m     26\u001b[0m theta_values \u001b[38;5;241m=\u001b[39m [\u001b[38;5;241m0.3\u001b[39m, \u001b[38;5;241m0.7\u001b[39m, \u001b[38;5;241m1.2\u001b[39m, \u001b[38;5;241m0.5\u001b[39m]\n\u001b[1;32m     27\u001b[0m qc \u001b[38;5;241m=\u001b[39m qiskit_circuit(theta_values)\n\u001b[0;32m---> 28\u001b[0m job \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbackend\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mshots\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1024\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m     29\u001b[0m result \u001b[38;5;241m=\u001b[39m job\u001b[38;5;241m.\u001b[39mresult()\n\u001b[1;32m     30\u001b[0m counts \u001b[38;5;241m=\u001b[39m result\u001b[38;5;241m.\u001b[39mget_counts(qc)\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/utils/deprecation.py:97\u001b[0m, in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m      0\u001b[0m <Error retrieving source code with stack_data see ipython/ipython#13598>\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/execute_function.py:294\u001b[0m, in \u001b[0;36mexecute\u001b[0;34m(experiments, backend, basis_gates, coupling_map, backend_properties, initial_layout, seed_transpiler, optimization_level, pass_manager, shots, memory, seed_simulator, default_qubit_los, default_meas_los, qubit_lo_range, meas_lo_range, schedule_los, meas_level, meas_return, memory_slots, memory_slot_size, rep_time, rep_delay, parameter_binds, schedule_circuit, inst_map, meas_map, scheduling_method, init_qubits, **run_config)\u001b[0m\n\u001b[1;32m    291\u001b[0m     experiments \u001b[38;5;241m=\u001b[39m pass_manager\u001b[38;5;241m.\u001b[39mrun(experiments)\n\u001b[1;32m    292\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    293\u001b[0m     \u001b[38;5;66;03m# transpiling the circuits using given transpile options\u001b[39;00m\n\u001b[0;32m--> 294\u001b[0m     experiments \u001b[38;5;241m=\u001b[39m \u001b[43mtranspile\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    295\u001b[0m \u001b[43m        \u001b[49m\u001b[43mexperiments\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    296\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbasis_gates\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbasis_gates\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    297\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcoupling_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcoupling_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    298\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbackend_properties\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbackend_properties\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    299\u001b[0m \u001b[43m        \u001b[49m\u001b[43minitial_layout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitial_layout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    300\u001b[0m \u001b[43m        \u001b[49m\u001b[43mseed_transpiler\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mseed_transpiler\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    301\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptimization_level\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptimization_level\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    302\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbackend\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbackend\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    303\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    305\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m schedule_circuit:\n\u001b[1;32m    306\u001b[0m     experiments \u001b[38;5;241m=\u001b[39m schedule(\n\u001b[1;32m    307\u001b[0m         circuits\u001b[38;5;241m=\u001b[39mexperiments,\n\u001b[1;32m    308\u001b[0m         backend\u001b[38;5;241m=\u001b[39mbackend,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    311\u001b[0m         method\u001b[38;5;241m=\u001b[39mscheduling_method,\n\u001b[1;32m    312\u001b[0m     )\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/compiler/transpiler.py:339\u001b[0m, in \u001b[0;36mtranspile\u001b[0;34m(circuits, backend, basis_gates, inst_map, coupling_map, backend_properties, initial_layout, layout_method, routing_method, translation_method, scheduling_method, instruction_durations, dt, approximation_degree, timing_constraints, seed_transpiler, optimization_level, callback, output_name, unitary_synthesis_method, unitary_synthesis_plugin_config, target, hls_config, init_method, optimization_method, ignore_backend_supplied_default_methods, num_processes)\u001b[0m\n\u001b[1;32m    335\u001b[0m _check_circuits_coupling_map(circuits, coupling_map, backend)\n\u001b[1;32m    337\u001b[0m timing_constraints \u001b[38;5;241m=\u001b[39m _parse_timing_constraints(backend, timing_constraints)\n\u001b[0;32m--> 339\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _given_inst_map \u001b[38;5;129;01mand\u001b[39;00m inst_map\u001b[38;5;241m.\u001b[39mhas_custom_gate() \u001b[38;5;129;01mand\u001b[39;00m target \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    340\u001b[0m     \u001b[38;5;66;03m# Do not mutate backend target\u001b[39;00m\n\u001b[1;32m    341\u001b[0m     target \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(target)\n\u001b[1;32m    342\u001b[0m     target\u001b[38;5;241m.\u001b[39mupdate_from_instruction_schedule_map(inst_map)\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/providers/backend_compat.py:397\u001b[0m, in \u001b[0;36m__init__\u001b[0;34m(self, backend, name_mapping, add_delay, filter_faulty)\u001b[0m\n\u001b[1;32m      0\u001b[0m <Error retrieving source code with stack_data see ipython/ipython#13598>\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/providers/ibmq/ibmqbackend.py:458\u001b[0m, in \u001b[0;36mIBMQBackend.properties\u001b[0;34m(self, refresh, datetime)\u001b[0m\n\u001b[1;32m    455\u001b[0m     datetime \u001b[38;5;241m=\u001b[39m local_to_utc(datetime)\n\u001b[1;32m    457\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m datetime \u001b[38;5;129;01mor\u001b[39;00m refresh \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_properties \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 458\u001b[0m     api_properties \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_api_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackend_properties\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdatetime\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdatetime\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    459\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m api_properties:\n\u001b[1;32m    460\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/providers/ibmq/api/clients/account.py:100\u001b[0m, in \u001b[0;36mAccountClient.backend_properties\u001b[0;34m(self, backend_name, datetime)\u001b[0m\n\u001b[1;32m     90\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Return the properties of the backend.\u001b[39;00m\n\u001b[1;32m     91\u001b[0m \n\u001b[1;32m     92\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     97\u001b[0m \u001b[38;5;124;03m    Backend properties.\u001b[39;00m\n\u001b[1;32m     98\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m     99\u001b[0m \u001b[38;5;66;03m# pylint: disable=redefined-outer-name\u001b[39;00m\n\u001b[0;32m--> 100\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43maccount_api\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbackend_name\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mproperties\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdatetime\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdatetime\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/providers/ibmq/api/rest/backend.py:68\u001b[0m, in \u001b[0;36mBackend.properties\u001b[0;34m(self, datetime)\u001b[0m\n\u001b[1;32m     65\u001b[0m     query[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwhere\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m extra_filter\n\u001b[1;32m     66\u001b[0m     params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfilter\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m json\u001b[38;5;241m.\u001b[39mdumps(query)  \u001b[38;5;66;03m# type: ignore[assignment]\u001b[39;00m\n\u001b[0;32m---> 68\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msession\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mjson()\n\u001b[1;32m     70\u001b[0m \u001b[38;5;66;03m# Adjust name of the backend.\u001b[39;00m\n\u001b[1;32m     71\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m response:\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/requests/sessions.py:602\u001b[0m, in \u001b[0;36mSession.get\u001b[0;34m(self, url, **kwargs)\u001b[0m\n\u001b[1;32m    594\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"Sends a GET request. Returns :class:`Response` object.\u001b[39;00m\n\u001b[1;32m    595\u001b[0m \n\u001b[1;32m    596\u001b[0m \u001b[38;5;124;03m:param url: URL for the new :class:`Request` object.\u001b[39;00m\n\u001b[1;32m    597\u001b[0m \u001b[38;5;124;03m:param \\*\\*kwargs: Optional arguments that ``request`` takes.\u001b[39;00m\n\u001b[1;32m    598\u001b[0m \u001b[38;5;124;03m:rtype: requests.Response\u001b[39;00m\n\u001b[1;32m    599\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    601\u001b[0m kwargs\u001b[38;5;241m.\u001b[39msetdefault(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m--> 602\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mGET\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/providers/ibmq/api/session.py:300\u001b[0m, in \u001b[0;36mRetrySession.request\u001b[0;34m(self, method, url, bare, **kwargs)\u001b[0m\n\u001b[1;32m    297\u001b[0m         \u001b[38;5;66;03m# Modify the original message on the chained exceptions.\u001b[39;00m\n\u001b[1;32m    298\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_modify_chained_exception_messages(ex)\n\u001b[0;32m--> 300\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m RequestsApiError(message, status_code) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mex\u001b[39;00m\n\u001b[1;32m    302\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m response\n",
      "\u001b[0;31mRequestsApiError\u001b[0m: '400 Client Error: Bad Request for url: https://api.quantum.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/devices/ibm_brisbane/properties?version=1. qiskit-ibmq-provider is no longer supported. Refer to the migration guide at https://docs.quantum.ibm.com/api/migration-guides/qiskit-runtime-from-ibmq-provider for instructions on how to migrate existing code to Qiskit Runtime primitives., Error code: 2418.'"
     ]
    }
   ],
   "source": [
    "from qiskit import QuantumCircuit\n",
    "from qiskit.execute_function import execute\n",
    "from qiskit.providers.ibmq import IBMQ\n",
    "from qiskit.tools.monitor import job_monitor\n",
    "\n",
    "# Load IBMQ account\n",
    "IBMQ.load_account()\n",
    "provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')\n",
    "\n",
    "# Choose the 'ibm_brisbane' backend\n",
    "backend = provider.get_backend('ibm_brisbane')\n",
    "\n",
    "# Define a simple Qiskit quantum circuit\n",
    "def qiskit_circuit(theta):\n",
    "    qc = QuantumCircuit(4)\n",
    "    qc.rx(theta[0], 0)\n",
    "    qc.ry(theta[1], 1)\n",
    "    qc.cx(0, 1)\n",
    "    qc.ry(theta[2], 2)\n",
    "    qc.cx(1, 2)\n",
    "    qc.rx(theta[3], 3)\n",
    "    qc.measure_all()\n",
    "    return qc\n",
    "\n",
    "# Run on IBM Q backend\n",
    "theta_values = [0.3, 0.7, 1.2, 0.5]\n",
    "qc = qiskit_circuit(theta_values)\n",
    "job = execute(qc, backend, shots=1024)\n",
    "result = job.result()\n",
    "counts = result.get_counts(qc)\n",
    "print(\"Qiskit simulation results:\", counts)\n",
    "\n",
    "# Optionally, run on Aer simulator\n",
    "aer_backend = Aer.get_backend('qasm_simulator')\n",
    "aer_job = execute(qc, aer_backend, shots=1024)\n",
    "aer_result = aer_job.result()\n",
    "aer_counts = aer_result.get_counts(qc)\n",
    "print(\"Aer simulation results:\", aer_counts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "cannot import name 'PrimitiveResult' from 'qiskit.primitives' (/Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/primitives/__init__.py)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[31], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m QuantumCircuit\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit_ibm_runtime\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m QiskitRuntimeService, Sampler\n\u001b[1;32m      4\u001b[0m \u001b[38;5;66;03m# Initialize the Qiskit Runtime service\u001b[39;00m\n\u001b[1;32m      5\u001b[0m service \u001b[38;5;241m=\u001b[39m QiskitRuntimeService(channel\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mibm_quantum\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit_ibm_runtime/__init__.py:204\u001b[0m\n\u001b[1;32m    201\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mlogging\u001b[39;00m\n\u001b[1;32m    202\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwarnings\u001b[39;00m\n\u001b[0;32m--> 204\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mqiskit_runtime_service\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m QiskitRuntimeService\n\u001b[1;32m    205\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mibm_backend\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m IBMBackend\n\u001b[1;32m    206\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mruntime_job\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m RuntimeJob\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit_ibm_runtime/qiskit_runtime_service.py:27\u001b[0m\n\u001b[1;32m     24\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mproviders\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexceptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m QiskitBackendNotFoundError\n\u001b[1;32m     25\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mproviders\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mproviderutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m filter_backends\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit_ibm_runtime\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ibm_backend\n\u001b[1;32m     28\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mproxies\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ProxyConfiguration\n\u001b[1;32m     29\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mhgp\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m to_instance_format, from_instance_format\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit_ibm_runtime/ibm_backend.py:50\u001b[0m\n\u001b[1;32m     45\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprovider_session\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m     46\u001b[0m     Session \u001b[38;5;28;01mas\u001b[39;00m ProviderSession,\n\u001b[1;32m     47\u001b[0m )\n\u001b[1;32m     49\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m qiskit_runtime_service  \u001b[38;5;66;03m# pylint: disable=unused-import,cyclic-import\u001b[39;00m\n\u001b[0;32m---> 50\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mruntime_job\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m RuntimeJob\n\u001b[1;32m     52\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapi\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mclients\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m RuntimeClient\n\u001b[1;32m     53\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexceptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m IBMBackendApiProtocolError, IBMBackendValueError, IBMBackendApiError\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit_ibm_runtime/runtime_job.py:28\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[38;5;66;03m# pylint: disable=unused-import,cyclic-import\u001b[39;00m\n\u001b[1;32m     27\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit_ibm_runtime\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m qiskit_runtime_service\n\u001b[0;32m---> 28\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconstants\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m API_TO_JOB_STATUS\n\u001b[1;32m     29\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexceptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m     30\u001b[0m     RuntimeJobFailureError,\n\u001b[1;32m     31\u001b[0m     RuntimeInvalidStateError,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     34\u001b[0m     RuntimeJobTimeoutError,\n\u001b[1;32m     35\u001b[0m )\n\u001b[1;32m     36\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mresult_decoder\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ResultDecoder\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit_ibm_runtime/constants.py:20\u001b[0m\n\u001b[1;32m     18\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mnoise_learner_result_decoder\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m NoiseLearnerResultDecoder\n\u001b[1;32m     19\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mestimator_result_decoder\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m EstimatorResultDecoder\n\u001b[0;32m---> 20\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msampler_result_decoder\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SamplerResultDecoder\n\u001b[1;32m     21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrunner_result\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m RunnerResult\n\u001b[1;32m     24\u001b[0m QISKIT_IBM_RUNTIME_API_URL \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttps://auth.quantum-computing.ibm.com/api\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit_ibm_runtime/utils/sampler_result_decoder.py:17\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[38;5;124;03m\"\"\"Sampler result decoder.\"\"\"\u001b[39;00m\n\u001b[1;32m     15\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Dict\n\u001b[0;32m---> 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprimitives\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PrimitiveResult\n\u001b[1;32m     19\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mresult_decoder\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ResultDecoder\n\u001b[1;32m     22\u001b[0m \u001b[38;5;28;01mclass\u001b[39;00m \u001b[38;5;21;01mSamplerResultDecoder\u001b[39;00m(ResultDecoder):\n",
      "\u001b[0;31mImportError\u001b[0m: cannot import name 'PrimitiveResult' from 'qiskit.primitives' (/Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/primitives/__init__.py)"
     ]
    }
   ],
   "source": [
    "from qiskit import QuantumCircuit\n",
    "from qiskit_ibm_runtime import QiskitRuntimeService, Sampler\n",
    "\n",
    "# Initialize the Qiskit Runtime service\n",
    "service = QiskitRuntimeService(channel=\"ibm_quantum\")\n",
    "\n",
    "# Define a simple quantum circuit\n",
    "def qiskit_circuit(theta):\n",
    "    qc = QuantumCircuit(4)\n",
    "    qc.rx(theta[0], 0)\n",
    "    qc.ry(theta[1], 1)\n",
    "    qc.cx(0, 1)\n",
    "    qc.ry(theta[2], 2)\n",
    "    qc.cx(1, 2)\n",
    "    qc.rx(theta[3], 3)\n",
    "    qc.measure_all()\n",
    "    return qc\n",
    "\n",
    "# Define theta values and create the circuit\n",
    "theta_values = [0.3, 0.7, 1.2, 0.5]\n",
    "qc = qiskit_circuit(theta_values)\n",
    "\n",
    "# Use the Sampler primitive to run the circuit on ibm_brisbane\n",
    "with Sampler(session=service) as sampler:\n",
    "    job = sampler.run(circuits=qc, shots=1024)\n",
    "    result = job.result()\n",
    "    counts = result.get_counts(qc)\n",
    "    print(\"Results from ibm_brisbane using Qiskit Runtime Sampler:\", counts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: qiskit in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (1.2.4)\n",
      "Requirement already satisfied: qiskit-ibm-runtime in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (0.32.0)\n",
      "Requirement already satisfied: rustworkx>=0.15.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.15.1)\n",
      "Requirement already satisfied: numpy<3,>=1.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.23.5)\n",
      "Requirement already satisfied: scipy>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.14.1)\n",
      "Requirement already satisfied: sympy>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.13.1)\n",
      "Requirement already satisfied: dill>=0.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.3.9)\n",
      "Requirement already satisfied: python-dateutil>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (2.9.0.post0)\n",
      "Requirement already satisfied: stevedore>=3.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (5.3.0)\n",
      "Requirement already satisfied: typing-extensions in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (4.12.2)\n",
      "Requirement already satisfied: symengine<0.14,>=0.11 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.13.0)\n",
      "Requirement already satisfied: requests>=2.19 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.32.3)\n",
      "Requirement already satisfied: requests-ntlm>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.1.0)\n",
      "Requirement already satisfied: urllib3>=1.21.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.2.3)\n",
      "Requirement already satisfied: websocket-client>=1.5.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.8.0)\n",
      "Requirement already satisfied: ibm-platform-services>=0.22.6 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (0.59.0)\n",
      "Requirement already satisfied: pydantic>=2.5.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.9.2)\n",
      "Requirement already satisfied: ibm-cloud-sdk-core<4.0.0,>=3.22.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from ibm-platform-services>=0.22.6->qiskit-ibm-runtime) (3.22.0)\n",
      "Requirement already satisfied: annotated-types>=0.6.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pydantic>=2.5.0->qiskit-ibm-runtime) (0.7.0)\n",
      "Requirement already satisfied: pydantic-core==2.23.4 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pydantic>=2.5.0->qiskit-ibm-runtime) (2.23.4)\n",
      "Requirement already satisfied: six>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from python-dateutil>=2.8.0->qiskit) (1.16.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (3.4.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (3.10)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (2024.8.30)\n",
      "Requirement already satisfied: ntlm-auth>=1.0.2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-runtime) (1.5.0)\n",
      "Requirement already satisfied: cryptography>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-runtime) (43.0.3)\n",
      "Requirement already satisfied: pbr>=2.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit) (6.1.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from sympy>=1.3->qiskit) (1.3.0)\n",
      "Requirement already satisfied: cffi>=1.12 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-runtime) (1.17.1)\n",
      "Requirement already satisfied: PyJWT<3.0.0,>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from ibm-cloud-sdk-core<4.0.0,>=3.22.0->ibm-platform-services>=0.22.6->qiskit-ibm-runtime) (2.9.0)\n",
      "Requirement already satisfied: pycparser in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-runtime) (2.22)\n"
     ]
    }
   ],
   "source": [
    "!pip install --upgrade qiskit qiskit-ibm-runtime"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "Qiskit is installed in an invalid environment that has both Qiskit >=1.0 and an earlier version. You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit <1.0 and >=1.0. Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. Qiskit unfortunately cannot enforce this requirement during environment resolution. See https://qisk.it/packaging-1-0 for more detail.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m QuantumCircuit\n\u001b[1;32m      2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mqiskit_ibm_runtime\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m QiskitRuntimeService, Sampler\n\u001b[1;32m      4\u001b[0m \u001b[38;5;66;03m# Initialize the Qiskit Runtime service\u001b[39;00m\n",
      "File \u001b[0;32m~/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages/qiskit/__init__.py:38\u001b[0m\n\u001b[1;32m     36\u001b[0m     _suppress_error \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39menviron\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQISKIT_SUPPRESS_1_0_IMPORT_ERROR\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m1\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     37\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mint\u001b[39m(_major) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _suppress_error:\n\u001b[0;32m---> 38\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\n\u001b[1;32m     39\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQiskit is installed in an invalid environment that has both Qiskit >=1.0\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     40\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m and an earlier version.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     41\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m You should create a new virtual environment, and ensure that you do not mix\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     42\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m dependencies between Qiskit <1.0 and >=1.0.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     43\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Any packages that depend on \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mqiskit-terra\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m are not compatible with Qiskit 1.0 and\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     44\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m will need to be updated.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     45\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Qiskit unfortunately cannot enforce this requirement during environment resolution.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     46\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m See https://qisk.it/packaging-1-0 for more detail.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     47\u001b[0m         )\n\u001b[1;32m     49\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_accelerate\u001b[39;00m\n\u001b[1;32m     50\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mqiskit\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_numpy_compat\u001b[39;00m\n",
      "\u001b[0;31mImportError\u001b[0m: Qiskit is installed in an invalid environment that has both Qiskit >=1.0 and an earlier version. You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit <1.0 and >=1.0. Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. Qiskit unfortunately cannot enforce this requirement during environment resolution. See https://qisk.it/packaging-1-0 for more detail."
     ]
    }
   ],
   "source": [
    "from qiskit import QuantumCircuit\n",
    "from qiskit_ibm_runtime import QiskitRuntimeService, Sampler\n",
    "\n",
    "# Initialize the Qiskit Runtime service\n",
    "service = QiskitRuntimeService(channel=\"ibm_quantum\")\n",
    "\n",
    "# Define a simple quantum circuit\n",
    "def qiskit_circuit(theta):\n",
    "    qc = QuantumCircuit(4)\n",
    "    qc.rx(theta[0], 0)\n",
    "    qc.ry(theta[1], 1)\n",
    "    qc.cx(0, 1)\n",
    "    qc.ry(theta[2], 2)\n",
    "    qc.cx(1, 2)\n",
    "    qc.rx(theta[3], 3)\n",
    "    qc.measure_all()\n",
    "    return qc\n",
    "\n",
    "# Define theta values and create the circuit\n",
    "theta_values = [0.3, 0.7, 1.2, 0.5]\n",
    "qc = qiskit_circuit(theta_values)\n",
    "\n",
    "# Use the Sampler primitive to run the circuit on ibm_brisbane\n",
    "with Sampler(session=service) as sampler:\n",
    "    job = sampler.run(circuits=qc, shots=1024)\n",
    "    result = job.result()\n",
    "    counts = result.get_counts(qc)\n",
    "    print(\"Results from ibm_brisbane using Qiskit Runtime Sampler:\", counts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'IBMQ' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[1], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mcsv\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[43mIBMQ\u001b[49m\u001b[38;5;241m.\u001b[39msave_account(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m86a3bf838145fe6863cd15adf39b4678715f07c28e66cf2e1e3c7a9f9020a4f4215b71b9c664db90690e99ed2760c6e973c993257ace55c7ae6d5dfacd2d13fc\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m      6\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mlog_execution_time\u001b[39m(execution_time, file_name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbenchmark_log.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[1;32m      7\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(file_name, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ma\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m file:\n",
      "\u001b[0;31mNameError\u001b[0m: name 'IBMQ' is not defined"
     ]
    }
   ],
   "source": [
    "import csv\n",
    "\n",
    "IBMQ.save_account('86a3bf838145fe6863cd15adf39b4678715f07c28e66cf2e1e3c7a9f9020a4f4215b71b9c664db90690e99ed2760c6e973c993257ace55c7ae6d5dfacd2d13fc')\n",
    "\n",
    "\n",
    "def log_execution_time(execution_time, file_name=\"benchmark_log.csv\"):\n",
    "    with open(file_name, mode='a') as file:\n",
    "        writer = csv.writer(file)\n",
    "        writer.writerow([execution_time])\n",
    "\n",
    "# Example of logging execution time within the benchmark function\n",
    "def run_benchmark_with_logging(iterations=100):\n",
    "    total_time = 0\n",
    "    for _ in range(iterations):\n",
    "        theta = np.random.rand(4)\n",
    "        start_time = time.time()\n",
    "        probabilities = quantum_decision_circuit(theta)\n",
    "        end_time = time.time()\n",
    "        exec_time = end_time - start_time\n",
    "        total_time += exec_time\n",
    "        log_execution_time(exec_time)  # Log each execution time\n",
    "    \n",
    "    avg_time = total_time / iterations\n",
    "    print(f\"Average execution time per iteration: {avg_time:.4f} seconds\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: qiskit in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (1.2.4)\n",
      "Requirement already satisfied: qiskit-ibm-runtime in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (0.32.0)\n",
      "Requirement already satisfied: rustworkx>=0.15.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.15.1)\n",
      "Requirement already satisfied: numpy<3,>=1.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.23.5)\n",
      "Requirement already satisfied: scipy>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.14.1)\n",
      "Requirement already satisfied: sympy>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (1.13.1)\n",
      "Requirement already satisfied: dill>=0.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.3.9)\n",
      "Requirement already satisfied: python-dateutil>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (2.9.0.post0)\n",
      "Requirement already satisfied: stevedore>=3.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (5.3.0)\n",
      "Requirement already satisfied: typing-extensions in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (4.12.2)\n",
      "Requirement already satisfied: symengine<0.14,>=0.11 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit) (0.13.0)\n",
      "Requirement already satisfied: requests>=2.19 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.32.3)\n",
      "Requirement already satisfied: requests-ntlm>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.1.0)\n",
      "Requirement already satisfied: urllib3>=1.21.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.2.3)\n",
      "Requirement already satisfied: websocket-client>=1.5.1 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (1.8.0)\n",
      "Requirement already satisfied: ibm-platform-services>=0.22.6 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (0.59.0)\n",
      "Requirement already satisfied: pydantic>=2.5.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from qiskit-ibm-runtime) (2.9.2)\n",
      "Requirement already satisfied: ibm-cloud-sdk-core<4.0.0,>=3.22.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from ibm-platform-services>=0.22.6->qiskit-ibm-runtime) (3.22.0)\n",
      "Requirement already satisfied: annotated-types>=0.6.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pydantic>=2.5.0->qiskit-ibm-runtime) (0.7.0)\n",
      "Requirement already satisfied: pydantic-core==2.23.4 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from pydantic>=2.5.0->qiskit-ibm-runtime) (2.23.4)\n",
      "Requirement already satisfied: six>=1.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from python-dateutil>=2.8.0->qiskit) (1.16.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (3.4.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (3.10)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests>=2.19->qiskit-ibm-runtime) (2024.8.30)\n",
      "Requirement already satisfied: ntlm-auth>=1.0.2 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-runtime) (1.5.0)\n",
      "Requirement already satisfied: cryptography>=1.3 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-runtime) (43.0.3)\n",
      "Requirement already satisfied: pbr>=2.0.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit) (6.1.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from sympy>=1.3->qiskit) (1.3.0)\n",
      "Requirement already satisfied: cffi>=1.12 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-runtime) (1.17.1)\n",
      "Requirement already satisfied: PyJWT<3.0.0,>=2.8.0 in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from ibm-cloud-sdk-core<4.0.0,>=3.22.0->ibm-platform-services>=0.22.6->qiskit-ibm-runtime) (2.9.0)\n",
      "Requirement already satisfied: pycparser in /Users/callum/Git/ActiveGraphNetworks/.venv/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-runtime) (2.22)\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "pip install -U qiskit qiskit-ibm-runtime"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.15"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}