|
import json |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
import os |
|
|
|
|
|
index_file_path = "graphs/index.json" |
|
|
|
|
|
domain_colors = { |
|
"Legislation": "red", |
|
"Healthcare Systems": "blue", |
|
"Healthcare Policies": "green", |
|
"Default": "grey" |
|
} |
|
|
|
|
|
def load_index_data(file_path): |
|
with open(file_path, "r") as file: |
|
return json.load(file) |
|
|
|
|
|
def build_graph(data): |
|
G = nx.DiGraph() |
|
for entity_id, entity_info in data["entities"].items(): |
|
label = entity_info.get("label", entity_id) |
|
domain = entity_info.get("inherits_from", "Default") |
|
color = domain_colors.get(domain, "grey") |
|
G.add_node(entity_id, label=label, color=color) |
|
|
|
|
|
file_path = entity_info.get("file_path") |
|
if file_path and os.path.exists(file_path): |
|
with open(file_path, "r") as f: |
|
entity_data = json.load(f) |
|
for rel in entity_data.get("relationships", []): |
|
G.add_edge(rel["source"], rel["target"], label=rel["attributes"]["relationship"]) |
|
|
|
|
|
for relationship in data["relationships"]: |
|
G.add_edge(relationship["source"], relationship["target"], label=relationship["attributes"].get("relationship", "related_to")) |
|
|
|
return G |
|
|
|
|
|
def visualize_graph(G, title="Inferred Contextual Relationships"): |
|
pos = nx.spring_layout(G) |
|
plt.figure(figsize=(15, 10)) |
|
|
|
|
|
node_colors = [G.nodes[node].get("color", "grey") for node in G.nodes] |
|
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color=node_colors, alpha=0.8) |
|
|
|
|
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold") |
|
|
|
|
|
nx.draw_networkx_edges(G, pos, arrowstyle="->", arrowsize=20, edge_color="gray", connectionstyle="arc3,rad=0.1") |
|
edge_labels = {(u, v): d["label"] for u, v, d in G.edges(data=True)} |
|
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_color="red", font_size=8) |
|
|
|
|
|
plt.title(title) |
|
plt.axis("off") |
|
plt.savefig("graph_visualization.pdf") |
|
plt.show() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
data = load_index_data(index_file_path) |
|
|
|
|
|
G = build_graph(data) |
|
|
|
|
|
visualize_graph(G) |