--- license: apache-2.0 base_model: google/bert_uncased_L-2_H-128_A-2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled results: [] --- # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9648 - Accuracy: 0.8245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002628217875157273 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5717 | 1.0 | 527 | 2.0086 | 0.8073 | | 1.2017 | 2.0 | 1054 | 1.8121 | 0.8222 | | 0.9081 | 3.0 | 1581 | 1.8837 | 0.8177 | | 0.7559 | 4.0 | 2108 | 1.9089 | 0.8234 | | 0.6694 | 5.0 | 2635 | 1.9749 | 0.8177 | | 0.6147 | 6.0 | 3162 | 1.9445 | 0.8257 | | 0.5729 | 7.0 | 3689 | 1.9648 | 0.8245 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.1