--- language: - sv license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 - google/fleurs metrics: - wer model-index: - name: whisper-small-sv-extra-data results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 type: mozilla-foundation/common_voice_13_0 config: default split: test args: 'config: sv, split: test' metrics: - name: Wer type: wer value: 22.158468913970783 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs metrics: - name: Wer type: wer value: 22.158468913970783 --- # whisper-small-sv-extra-data This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_13_0 and the google/fleurs datasets. It achieves the following results on the evaluation set: - Loss: 0.3843 - Wer: 22.1585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3189 | 0.53 | 500 | 0.3610 | 25.2029 | | 0.1451 | 1.05 | 1000 | 0.3337 | 23.6495 | | 0.1432 | 1.58 | 1500 | 0.3263 | 22.8908 | | 0.0572 | 2.1 | 2000 | 0.3284 | 22.1622 | | 0.0502 | 2.63 | 2500 | 0.3405 | 22.2000 | | 0.0259 | 3.15 | 3000 | 0.3596 | 22.1924 | | 0.0246 | 3.68 | 3500 | 0.3650 | 22.2208 | | 0.0137 | 4.2 | 4000 | 0.3843 | 22.1585 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0