File size: 2,009 Bytes
0f8aa1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d3884
 
 
 
 
0f8aa1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d3884
 
 
 
 
0f8aa1e
 
 
 
48d3884
0f8aa1e
48d3884
0f8aa1e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- f1
- recall
- accuracy
- precision
model-index:
- name: bert-base-fine-tuned-text-classificarion-ds
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-fine-tuned-text-classificarion-ds

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8256
- F1: 0.0045
- Recall: 0.0483
- Accuracy: 0.0483
- Precision: 0.0023

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Recall | Accuracy | Precision |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:|
| 4.0201        | 1.0   | 588  | 3.8207          | 0.0000 | 0.0034 | 0.0034   | 0.0000    |
| 4.0249        | 2.0   | 1176 | 3.7674          | 0.0006 | 0.0175 | 0.0175   | 0.0003    |
| 4.0117        | 3.0   | 1764 | 3.8834          | 0.0002 | 0.0094 | 0.0094   | 0.0001    |
| 4.0209        | 4.0   | 2352 | 3.7563          | 0.0003 | 0.0131 | 0.0131   | 0.0002    |
| 4.0146        | 5.0   | 2940 | 3.8256          | 0.0045 | 0.0483 | 0.0483   | 0.0023    |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3