File size: 2,026 Bytes
043eeaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: PlanTL-GOB-ES/roberta-base-bne
tags:
- generated_from_trainer
metrics:
- f1
- recall
- accuracy
- precision
model-index:
- name: roberta-base-fine-tuned-text-classificarion-ds-ss
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-fine-tuned-text-classificarion-ds-ss

This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0199
- F1: 0.7910
- Recall: 0.7917
- Accuracy: 0.7917
- Precision: 0.7980

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Recall | Accuracy | Precision |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:|
| No log        | 1.0   | 442  | 1.1329          | 0.6970 | 0.7275 | 0.7275   | 0.6820    |
| 1.1901        | 2.0   | 884  | 0.9856          | 0.7354 | 0.7533 | 0.7533   | 0.7315    |
| 0.6949        | 3.0   | 1326 | 1.0176          | 0.7507 | 0.7579 | 0.7579   | 0.7689    |
| 0.3873        | 4.0   | 1768 | 1.0008          | 0.7769 | 0.7815 | 0.7815   | 0.7854    |
| 0.1975        | 5.0   | 2210 | 1.0199          | 0.7910 | 0.7917 | 0.7917   | 0.7980    |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3