File size: 1,997 Bytes
1344e8b
 
 
 
 
 
 
 
 
 
 
 
fa0cde7
 
1344e8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa0cde7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- recall
- accuracy
- precision
model-index:
- name: roberta-bne-fine-tuned-text-classification-SL-dss
  results: []
language:
- es
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-bne-fine-tuned-text-classification-SL-dss

This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5089
- F1: 0.4781
- Recall: 0.4750
- Accuracy: 0.4750
- Precision: 0.5009

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Recall | Accuracy | Precision |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:|
| 3.235         | 1.0   | 836  | 2.4142          | 0.3995 | 0.4471 | 0.4471   | 0.4786    |
| 2.0006        | 2.0   | 1672 | 2.1013          | 0.4672 | 0.4942 | 0.4942   | 0.4867    |
| 1.2424        | 3.0   | 2508 | 2.1138          | 0.4861 | 0.4852 | 0.4852   | 0.5132    |
| 0.7242        | 4.0   | 3344 | 2.2694          | 0.4828 | 0.4747 | 0.4747   | 0.5126    |
| 0.3403        | 5.0   | 4180 | 2.5089          | 0.4781 | 0.4750 | 0.4750   | 0.5009    |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3