File size: 2,789 Bytes
ba56501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f03f1
ba56501
 
 
 
 
 
 
 
 
 
 
 
 
 
29f03f1
 
 
ba56501
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from transformers.image_processing_utils import ImageProcessingMixin, BatchFeature

from torchvision.transforms import transforms as tf
import torchvision.transforms.functional as F
from PIL import Image
import torch


class CondViTProcessor(ImageProcessingMixin):
    def __init__(
        self,
        bkg_color=255,
        input_resolution=224,
        image_mean=(0.48145466, 0.4578275, 0.40821073),
        image_std=(0.26862954, 0.26130258, 0.27577711),
        categories=[
            "Bags",
            "Feet",
            "Hands",
            "Head",
            "Lower Body",
            "Neck",
            "Outwear",
            "Upper Body",
            "Waist",
            "Whole Body",
        ],
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.bkg_color = bkg_color
        self.input_resolution = input_resolution
        self.image_mean = image_mean
        self.image_std = image_std

        self.categories = categories

    def square_pad(self, image):
        max_wh = max(image.size)
        p_left, p_top = [(max_wh - s) // 2 for s in image.size]
        p_right, p_bottom = [
            max_wh - (s + pad) for s, pad in zip(image.size, [p_left, p_top])
        ]
        padding = (p_left, p_top, p_right, p_bottom)
        return F.pad(image, padding, self.bkg_color, "constant")

    def process_img(self, image):
        img = self.square_pad(image)
        img = F.resize(img, self.input_resolution)
        img = F.to_tensor(img)
        img = F.normalize(img, self.image_mean, self.image_std)
        return img

    def process_cat(self, cat):
        if cat is not None:
            cat = torch.tensor(self.categories.index(cat), dtype=int)
        return cat

    def __call__(self, images, categories=None):
        """
        Parameters
        ----------
        images : Union[Image.Image, List[Image.Image]]
            Image or list of images to process
        categories : Optional[Union[str, List[str]]]
            Category or list of categories to process

        Returns
        -------
        BatchFeature
            pixel_values : torch.Tensor
                Processed image tensor (B C H W)
            category_indices : torch.Tensor
                Categories indices (B)
        """
        use_cats = categories is not None

        # Single Image + Single category
        if isinstance(images, Image.Image):
            images = [images]
            if use_cats:
                categories = [categories]

        data = {}
        data["pixel_values"] = torch.stack([self.process_img(img) for img in images])

        if use_cats:
            data["category_indices"] = torch.stack(
                [self.process_cat(c) for c in categories]
            )

        return BatchFeature(data=data)