#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/doge/modular_doge.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_doge.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on the Wonderful Matrices paper implementation.
# The Doge family of small language models is trained by Jingze Shi.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_utils import PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import (
    LossKwargs,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torch_flex_attn_available,
    logging,
    replace_return_docstrings,
)
from .configuration_doge import DogeConfig

if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import flex_attention

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "DogeConfig"


class DogeRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        DogeRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class DogeResidual(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))

    def forward(self, residual_states, hidden_states):
        return self.weight * residual_states + hidden_states

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}"


class DogeRotaryEmbedding(nn.Module):
    def __init__(self, config: DogeConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def _dynamic_frequency_update(self, position_ids, device):
        """
        dynamic RoPE layers should recompute `inv_freq` in the following situations:
        1 - growing beyond the cached sequence length (allow scaling)
        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
        """
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:  # growth
            inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
            self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
            self.max_seq_len_cached = seq_len

        if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
            # This .to() is needed if the model has been moved to a device after being initialized (because
            # the buffer is automatically moved, but not the original copy)
            self.original_inv_freq = self.original_inv_freq.to(device)
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.original_max_seq_len

    @torch.no_grad()
    def forward(self, x, position_ids):
        if "dynamic" in self.rope_type:
            self._dynamic_frequency_update(position_ids, device=x.device)

        # Core RoPE block
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()

        # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
        cos = cos * self.attention_scaling
        sin = sin * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(-1, -2)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = F.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


def sdpa_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    dropout: float = 0.0,
    scaling: Optional[float] = None,
    is_causal: Optional[bool] = None,
    **kwargs,
) -> Tuple[torch.Tensor, None]:
    key = repeat_kv(key, module.num_key_value_groups)
    value = repeat_kv(value, module.num_key_value_groups)

    causal_mask = attention_mask
    if attention_mask is not None:
        causal_mask = causal_mask[:, :, :, : key.shape[-2]]

    # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
    # Reference: https://github.com/pytorch/pytorch/issues/112577.
    query = query.contiguous()
    key = key.contiguous()
    value = value.contiguous()

    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
    # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
    if is_causal is None:
        is_causal = causal_mask is None and query.shape[2] > 1

    # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor.
    # We convert it to a bool for the SDPA kernel that only accepts bools.
    if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor):
        is_causal = is_causal.item()

    # NOTE: As of pytorch 2.5.1, SDPA backward pass of cuDNN is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581)
    torch.backends.cuda.enable_cudnn_sdp(False)
    attn_output = F.scaled_dot_product_attention(
        query=query,
        key=key,
        value=value,
        attn_mask=causal_mask,
        dropout_p=dropout,
        scale=scaling,
        is_causal=is_causal,
    )
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, None


def flex_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: Optional[float] = None,
    is_causal: Optional[bool] = None,
    softcap: Optional[float] = None,
    head_mask: Optional[torch.Tensor] = None,
    **kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
    causal_mask = attention_mask
    if attention_mask is not None:
        causal_mask = causal_mask[:, :, :, : key.shape[-2]]

    if is_causal is None:
        is_causal = causal_mask is None and query.shape[2] > 1

    def causal_mod(score, batch, head, q_idx, kv_idx):
        if softcap is not None:
            score = softcap * torch.tanh(score / softcap)
        if causal_mask is not None:
            score = score + causal_mask[batch][0][q_idx][kv_idx]
        if head_mask is not None:
            score = score + head_mask[batch][head][0][0]
        return score

    def dynamic_mod(score, batch, head, q_idx, kv_idx):
        if softcap is not None:
            score = softcap * torch.tanh(score / softcap)
        if causal_mask is not None:
            score = score + causal_mask[batch][head][q_idx][kv_idx]
        if head_mask is not None:
            score = score + head_mask[batch][head][0][0]
        return score

    # TODO: flex_attention: As of pytorch 2.5.1, captured buffers that require grad are not yet supported.
    # NOTE: So we only use flex_attention in inference mode.
    mask_mod = causal_mod if is_causal or module.training else dynamic_mod

    attn_output, attention_weights = flex_attention(
        query=query,
        key=key,
        value=value,
        score_mod=mask_mod,
        enable_gqa=True,
        scale=scaling,
        # Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless.
        # For simplification, we thus always return it as no additional computations are introduced.
        return_lse=True,
    )
    # lse is returned in float32
    attention_weights = attention_weights.to(value.dtype)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attention_weights


ALL_ATTENTION_FUNCTIONS = {
    "eager": eager_attention_forward,
    "sdpa": sdpa_attention_forward,
    "flex_attention": flex_attention_forward,
}


class DogeDynamicMaskAttention(nn.Module):
    """Dynamic Mask Attention from 'Wonderful Matrices' paper."""

    def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.dynamic_mask_ratio = config.dynamic_mask_ratio

        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.hidden_bias
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.hidden_bias
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.hidden_bias
        )
        # dynamic mask for the QK^T attention weights matrix
        self.A = nn.Parameter(torch.zeros(config.num_attention_heads))
        self.dt_proj = nn.Linear(
            config.num_key_value_heads * self.head_dim, config.num_attention_heads, bias=config.hidden_bias
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.hidden_bias
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # calculate dynamic mask from value_states
        dt_states = self.dt_proj(
            value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1)
        )
        dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
        attn_mask = self.prepare_dynamic_mask(
            hidden_states=hidden_states,
            dynamic_mask=dynamic_mask,
            dynamic_mask_ratio=self.dynamic_mask_ratio,
            attention_mask=attention_mask,
        )

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask=attn_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights

    def prepare_dynamic_mask(
        self,
        hidden_states: torch.Tensor,
        dynamic_mask: torch.Tensor,
        dynamic_mask_ratio: float = 0.0,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        """
        Combine `dynamic_mask` with `attention_mask` to generate the final `attn_mask`.

        Args:
            hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision.
            dynamic_mask (`torch.Tensor`): dynamic mask of shape `(batch_size, num_heads, key_sequence_length)`.
            dynamic_mask_ratio (`float`, *optional*): Ratio from 0.0 to 1.0 used to control the proportion of the dynamic mask filled with the minimum value.
            attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`.
        """
        attn_mask = None
        if dynamic_mask is not None:
            attn_mask = dynamic_mask[:, :, None, :]
            if 0.0 < dynamic_mask_ratio < 1.0:
                min_type = torch.finfo(hidden_states.dtype).min
                num_dynamic_mask = int(attn_mask.shape[-1] * dynamic_mask_ratio)
                if num_dynamic_mask > 0:
                    rate_value = torch.kthvalue(attn_mask, num_dynamic_mask, dim=-1, keepdim=True).values
                    attn_mask = attn_mask.masked_fill(attn_mask < rate_value, min_type)
            if attention_mask is not None:
                attn_mask = attn_mask + attention_mask[:, :, :, : attn_mask.shape[-1]]
        else:
            attn_mask = attention_mask

        return attn_mask


class DogeMLP(nn.Module):
    def __init__(self, config: DogeConfig):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.intermediate_dim = config.intermediate_size
        self.act_fn = ACT2FN[config.hidden_act]

        self.gate_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
        self.up_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
        self.down_proj = nn.Linear(self.intermediate_dim, self.hidden_dim, bias=config.hidden_bias)

    def forward(
        self,
        hidden_states: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
        return hidden_states


class DogeCDMoE(DogeMLP):
    """Cross Domain Mixture of Experts from 'Wonderful Matrices' paper."""

    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.hidden_dim = config.hidden_size
        self.act_fn = ACT2FN[config.hidden_act]

        self.expert_retrieval_dim = config.expert_retrieval_size
        self.num_cdmoe_experts = config.num_cdmoe_experts
        self.num_cdmoe_heads = config.num_cdmoe_heads
        self.num_cdmoe_experts_per_head = config.num_cdmoe_experts_per_head
        self.num_keys = int(math.sqrt(self.num_cdmoe_experts))

        # queries and keys for retrieval experts
        self.queries_proj = nn.Linear(self.hidden_dim, self.num_cdmoe_heads * self.expert_retrieval_dim, bias=False)
        self.keys = nn.Parameter(torch.zeros(self.num_cdmoe_heads, self.expert_retrieval_dim, self.num_keys))

        # experts
        self.down_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim)
        self.up_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        bsz, seq_len, _ = hidden_states.shape

        # get routing weights with queries and keys
        queries = self.queries_proj(hidden_states)
        queries = queries.view(2, self.num_cdmoe_heads, bsz * seq_len, -1)
        keys = self.keys.view(2, self.num_cdmoe_heads, -1, self.num_keys)
        routing_weights = torch.matmul(queries, keys)
        routing_weights = routing_weights.transpose(-2, -3).view(2, bsz, seq_len, self.num_cdmoe_heads, self.num_keys)

        # get experts with the highest routing weights
        (scores_x, scores_y), (indices_x, indices_y) = routing_weights.topk(self.num_cdmoe_experts_per_head, dim=-1)
        all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
        all_scores = all_scores.view(*scores_x.shape[:-1], -1)
        all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
        all_indices = all_indices.view(*indices_x.shape[:-1], -1)
        scores, pk_indices = all_scores.topk(self.num_cdmoe_experts_per_head, dim=-1)
        indices = all_indices.gather(-1, pk_indices)
        down_embed = self.down_embed(indices)
        up_embed = self.up_embed(indices)

        # mix experts states with cross domain states
        experts_weights = torch.sum(hidden_states[:, :, None, None, :] * down_embed, dim=-1)
        experts_weights = self.act_fn(experts_weights) * scores.softmax(dim=-1)
        experts_states = torch.sum(experts_weights[:, :, :, :, None] * up_embed, dim=(-2, -3))
        hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
        hidden_states = hidden_states + experts_states
        return hidden_states


class DogeDecoderLayer(nn.Module):
    def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.hidden_dropout = config.hidden_dropout

        self.pre_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.self_attn = DogeDynamicMaskAttention(config=config, layer_idx=layer_idx)
        self.pre_residual = DogeResidual(config.hidden_size)

        self.post_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.feed_forward = DogeMLP(config) if not config.is_moe else DogeCDMoE(config)
        self.post_residual = DogeResidual(config.hidden_size)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        # sequence transformation
        residual = hidden_states
        hidden_states = self.pre_layernorm(hidden_states)
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        self_attn_weights = None
        hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
        hidden_states = self.pre_residual(residual, hidden_states)

        # state transformation
        residual = hidden_states
        hidden_states = self.post_layernorm(hidden_states)
        hidden_states = self.feed_forward(hidden_states)
        hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
        hidden_states = self.post_residual(residual, hidden_states)

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (self_attn_weights,)

        return outputs


DOGE_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`DogeConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Doge Model outputting raw hidden-states without any specific head on top.",
    DOGE_START_DOCSTRING,
)
class DogePreTrainedModel(PreTrainedModel):
    config_class = DogeConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["DogeDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_sdpa = True
    # _supports_flex_attn = True # TODO: enable this when flex_attention is fully supported
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


DOGE_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance, see our
            [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    "The bare Doge Model outputting raw hidden-states without any specific head on top.",
    DOGE_START_DOCSTRING,
)
class DogeModel(DogePreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DogeDecoderLayer`]

    Args:
        config: DogeConfig
    """

    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.rotary_emb = DogeRotaryEmbedding(config)
        self.layers = nn.ModuleList(
            [DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.final_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.word_embed

    def set_input_embeddings(self, value):
        self.word_embed = value

    @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You cannot specify both input_ids and inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.word_embed(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                    position_embeddings,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                    **kwargs,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.final_layernorm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        output = BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )
        return output if return_dict else output.to_tuple()

    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        # We have to provide attention_mask for dynamic mask computation
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)

        dtype, device = input_tensor.dtype, input_tensor.device
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        device: torch.device,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            device (`torch.device`):
                The device to plcae the 4D attention mask on.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )

        return causal_mask


class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}

    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.config = config
        self.model = DogeModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.word_embed

    def set_input_embeddings(self, value):
        self.model.word_embed = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def get_decoder(self):
        return self.model

    def set_decoder(self, decoder):
        self.model = decoder

    @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[LossKwargs],
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            logits_to_keep (`int`, *optional*):
                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
                This is useful when using packed tensor format (single dimension for batch and sequence length).

        Returns:

        Example:

        ```python
         >>> from transformers import AutoTokenizer, AutoModelForCausalLM

        >>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M")
        >>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder output consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs[0]
        # only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    The Doge Model transformer with a sequence classification head on top (linear layer).

    [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    DOGE_START_DOCSTRING,
)
class DogeForSequenceClassification(DogePreTrainedModel):
    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.model = DogeModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
        self.config = config

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.word_embed

    def set_input_embeddings(self, value):
        self.model.word_embed = value

    @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            last_non_pad_token = -1
        elif input_ids is not None:
            # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
            non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
            token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
            last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
        else:
            last_non_pad_token = -1
            logger.warning_once(
                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
            )

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)

        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


__all__ = ["DogeForCausalLM", "DogeModel", "DogePreTrainedModel", "DogeForSequenceClassification"]