SmerkyG KaleiNeely commited on
Commit
efe2322
·
verified ·
0 Parent(s):

Duplicate from RWKV/rwkv-5-world-1b5

Browse files

Co-authored-by: Kalei Neely <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Run Huggingface RWKV5 World Model
2
+
3
+
4
+ #### CPU
5
+
6
+ ```python
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer
9
+
10
+ def generate_prompt(instruction, input=""):
11
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
12
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
13
+ if input:
14
+ return f"""Instruction: {instruction}
15
+
16
+ Input: {input}
17
+
18
+ Response:"""
19
+ else:
20
+ return f"""User: hi
21
+
22
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
23
+
24
+ User: {instruction}
25
+
26
+ Assistant:"""
27
+
28
+
29
+ model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True).to(torch.float32)
30
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, padding_side='left')
31
+
32
+ text = "请介绍北京的旅游景点"
33
+ prompt = generate_prompt(text)
34
+
35
+ inputs = tokenizer(prompt, return_tensors="pt")
36
+ output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
37
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
38
+ ```
39
+
40
+ output:
41
+
42
+ ```shell
43
+ User: hi
44
+
45
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
46
+
47
+ User: 请介绍北京的旅游景点
48
+
49
+ Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点:
50
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。
51
+ 2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。
52
+ 3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。
53
+ 4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。
54
+ 5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。
55
+ 6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。
56
+ 7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。
57
+ 8. 天坛:是中国古代皇家
58
+ ```
59
+
60
+ #### GPU
61
+
62
+ ```python
63
+ import torch
64
+ from transformers import AutoModelForCausalLM, AutoTokenizer
65
+
66
+ def generate_prompt(instruction, input=""):
67
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
68
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
69
+ if input:
70
+ return f"""Instruction: {instruction}
71
+
72
+ Input: {input}
73
+
74
+ Response:"""
75
+ else:
76
+ return f"""User: hi
77
+
78
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
79
+
80
+ User: {instruction}
81
+
82
+ Assistant:"""
83
+
84
+
85
+ model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, torch_dtype=torch.float16).to(0)
86
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, padding_side='left')
87
+
88
+ text = "介绍一下大熊猫"
89
+ prompt = generate_prompt(text)
90
+
91
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
92
+ output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
93
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
94
+ ```
95
+
96
+ output:
97
+
98
+ ```shell
99
+ User: hi
100
+
101
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
102
+
103
+ User: 介绍一下大熊猫
104
+
105
+ Assistant: 大熊猫是一种中国特有的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和白色的耳朵。大熊猫的食物主要是竹子,它们会在竹林中寻找竹子,并且会将竹子放在竹笼中进行储存。大熊猫的寿命约为20至30年,但由于栖息地的丧失和人类活动的
106
+ ```
107
+
108
+ #### Batch Inference
109
+
110
+ ```python
111
+ import torch
112
+ from transformers import AutoModelForCausalLM, AutoTokenizer
113
+
114
+ def generate_prompt(instruction, input=""):
115
+ instruction = instruction.strip().replace('\r\n', '\n').replace('\n\n', '\n')
116
+ input = input.strip().replace('\r\n', '\n').replace('\n\n', '\n')
117
+ if input:
118
+ return f"""Instruction: {instruction}
119
+
120
+ Input: {input}
121
+
122
+ Response:"""
123
+ else:
124
+ return f"""User: hi
125
+
126
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
127
+
128
+ User: {instruction}
129
+
130
+ Assistant:"""
131
+
132
+ model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True).to(torch.float32)
133
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-1b5", trust_remote_code=True, padding_side='left')
134
+
135
+ texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
136
+ prompts = [generate_prompt(text) for text in texts]
137
+
138
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True)
139
+ outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
140
+
141
+ for output in outputs:
142
+ print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
143
+
144
+ ```
145
+
146
+ output:
147
+
148
+ ```shell
149
+ User: hi
150
+
151
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
152
+
153
+ User: 请介绍北京的旅游景点
154
+
155
+ Assistant: 北京是中国的首都,拥有丰富的旅游资源和历史文化遗产。以下是一些北京的旅游景点:
156
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,是中国最大的古代宫殿建筑群之一。
157
+ 2. 天安门广场:位于北京市中心,是中国最著名的城市广场之一,也是中国最大的城市广场。
158
+ 3. 颐和
159
+ User: hi
160
+
161
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
162
+
163
+ User: 介绍一下大熊猫
164
+
165
+ Assistant: 大熊猫是一种生活在中国中部地区的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和圆圆的眼睛。大熊猫是一种濒危物种,目前只有在野外的几个保护区才能看到它们的身影。大熊猫的食物主要是竹子,它们会在竹子上寻找食物,并且可以通
166
+ User: hi
167
+
168
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
169
+
170
+ User: 乌兰察布
171
+
172
+ Assistant: 乌兰察布是中国新疆维吾尔自治区的一个县级市,位于新疆维吾尔自治区中部,是新疆的第二大城市。乌兰察布市是新疆的第一大城市,也是新疆的重要城市之一。乌兰察布市是新疆的经济中心,也是新疆的重要交通枢纽之一。乌兰察布市的人口约为2.5万人,其中汉族占绝大多数。乌
173
+ ```
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Rwkv5ForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_rwkv5.Rwkv5Config",
7
+ "AutoModelForCausalLM": "modeling_rwkv5.Rwkv5ForCausalLM"
8
+ },
9
+ "attention_hidden_size": 2048,
10
+ "bos_token_id": 0,
11
+ "context_length": 4096,
12
+ "eos_token_id": 0,
13
+ "head_size": 64,
14
+ "hidden_size": 2048,
15
+ "intermediate_size": null,
16
+ "layer_norm_epsilon": 1e-05,
17
+ "model_type": "rwkv5",
18
+ "num_hidden_layers": 24,
19
+ "rescale_every": 6,
20
+ "tie_word_embeddings": false,
21
+ "transformers_version": "4.33.1",
22
+ "use_cache": true,
23
+ "vocab_size": 65536
24
+ }
configuration_rwkv5.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ RWKV configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ RWKV5_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ class Rwkv5Config(PretrainedConfig):
28
+ """
29
+ This is the configuration class to store the configuration of a [`Rwkv5Model`]. It is used to instantiate a RWKV5
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the RWVK-4
32
+ [RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 65536):
40
+ Vocabulary size of the RWKV5 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`Rwkv5Model`].
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the embeddings and hidden states.
44
+ num_hidden_layers (`int`, *optional*, defaults to 24):
45
+ Number of hidden layers in the model.
46
+ attention_hidden_size (`int`, *optional*):
47
+ Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
48
+ num_attention_heads (`int`, *optional*, defaults to 64):
49
+ The attention heads to use in rwkv5 self_attention module.
50
+ head_size (`int`, *optional*, defaults to 64): head_size of rwkv5 self_attention module.
51
+ intermediate_size (`int`, *optional*):
52
+ Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
53
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
54
+ The epsilon to use in the layer normalization layers.
55
+ bos_token_id (`int`, *optional*, defaults to 0):
56
+ The id of the beginning of sentence token in the vocabulary. Defaults to 0.
57
+ eos_token_id (`int`, *optional*, defaults to 0):
58
+ The id of the end of sentence token in the vocabulary. Defaults to 0.
59
+ rescale_every (`int`, *optional*, defaults to 6):
60
+ At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
61
+ `rescale_every` layer. If set to 0 or a negative number, no rescale is done.
62
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
63
+ Whether or not to tie the word embeddings with the input token embeddings.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last state.
66
+
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import Rwkv5Config, Rwkv5Model
72
+
73
+ >>> # Initializing a Rwkv5 configuration
74
+ >>> configuration = Rwkv5Config()
75
+
76
+ >>> # Initializing a model (with random weights) from the configuration
77
+ >>> model = Rwkv5Model(configuration)
78
+
79
+ >>> # Accessing the model configuration
80
+ >>> configuration = model.config
81
+ ```"""
82
+
83
+ model_type = "rwkv5"
84
+
85
+ def __init__(
86
+ self,
87
+ vocab_size=65536,
88
+ hidden_size=768,
89
+ num_hidden_layers=24,
90
+ attention_hidden_size=None,
91
+ head_size=64,
92
+ head_size_divisor=8,
93
+ intermediate_size=None,
94
+ layer_norm_epsilon=1e-5,
95
+ bos_token_id=0,
96
+ eos_token_id=0,
97
+ rescale_every=6,
98
+ tie_word_embeddings=False,
99
+ use_cache=True,
100
+ **kwargs,
101
+ ):
102
+ self.vocab_size = vocab_size
103
+ self.hidden_size = hidden_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
106
+ self.head_size = head_size
107
+ self.head_size_divisor = head_size_divisor
108
+ self.intermediate_size = None
109
+ self.layer_norm_epsilon = layer_norm_epsilon
110
+ self.rescale_every = rescale_every
111
+ self.use_cache = use_cache
112
+
113
+ self.bos_token_id = bos_token_id
114
+ self.eos_token_id = eos_token_id
115
+
116
+ super().__init__(
117
+ tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
118
+ )
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 0,
4
+ "pad_token_id": 0,
5
+ "max_window_size": 4096,
6
+ "max_new_tokens": 4096,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.1,
10
+ "repetition_penalty": 1.0,
11
+ "transformers_version": "4.31.1"
12
+ }
modeling_rwkv5.py ADDED
@@ -0,0 +1,845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The RWKV team and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch RWKV5 World model."""
16
+
17
+ from dataclasses import dataclass
18
+ from pathlib import Path
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+
27
+ from transformers.modeling_utils import PreTrainedModel
28
+ from transformers.utils import (
29
+ ModelOutput,
30
+ add_code_sample_docstrings,
31
+ add_start_docstrings,
32
+ add_start_docstrings_to_model_forward,
33
+ is_bitsandbytes_available,
34
+ is_ninja_available,
35
+ is_torch_cuda_available,
36
+ logging,
37
+ )
38
+
39
+ from .configuration_rwkv5 import Rwkv5Config
40
+
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ _CHECKPOINT_FOR_DOC = "RWKV/rwkv-5-world-1b5"
45
+ _CONFIG_FOR_DOC = "Rwkv5Config"
46
+
47
+ rwkv5_cuda_kernel = None
48
+
49
+
50
+ # Copied from https://github.com/huggingface/transformers/blob/18cbaf13dcaca7145f5652aefb9b19734c56c3cd/src/transformers/models/rwkv/modeling_rwkv.py#L65
51
+ def load_wkv5_cuda_kernel(head_size):
52
+ from torch.utils.cpp_extension import load as load_kernel
53
+
54
+ global rwkv5_cuda_kernel
55
+
56
+ kernel_folder = Path(__file__).parent.resolve()
57
+ cuda_kernel_files = [kernel_folder / f for f in ["wkv5_op.cpp", "wkv5_cuda.cu"]]
58
+
59
+ # Only load the kernel if it's not been loaded yet or if we changed the context length
60
+ if rwkv5_cuda_kernel is not None and rwkv5_cuda_kernel.head_size == head_size:
61
+ return
62
+
63
+ logger.info(f"Loading CUDA kernel for RWKV5 at head size of {head_size}.")
64
+
65
+ flags = [
66
+ "-res-usage",
67
+ "--maxrregcount 60",
68
+ "--use_fast_math",
69
+ "-O3",
70
+ "-Xptxas -O3",
71
+ "--extra-device-vectorization",
72
+ f"-D_N_={head_size}",
73
+ ]
74
+ rwkv5_cuda_kernel = load_kernel(
75
+ name=f"wkv_{head_size}",
76
+ sources=cuda_kernel_files,
77
+ verbose=(logging.get_verbosity() == logging.DEBUG),
78
+ extra_cuda_cflags=flags,
79
+ )
80
+ rwkv5_cuda_kernel.head_size = head_size
81
+
82
+
83
+ class Rwkv5LinearAttention(torch.autograd.Function):
84
+ @staticmethod
85
+ def forward(ctx, receptance, key, value, time_decay, time_first, state):
86
+ with torch.no_grad():
87
+ assert receptance.dtype == torch.bfloat16
88
+ assert key.dtype == torch.bfloat16
89
+ assert value.dtype == torch.bfloat16
90
+ assert time_decay.dtype == torch.bfloat16
91
+ assert time_first.dtype == torch.bfloat16
92
+ assert state.dtype == torch.float32
93
+ batch, seq_length, hidden_size = key.shape
94
+ num_heads = time_decay.shape[0]
95
+ ctx.batch = batch
96
+ ctx.seq_length = seq_length
97
+ ctx.hidden_size = hidden_size
98
+ ctx.num_heads = num_heads
99
+ e_time_decay = (-torch.exp(time_decay.float())).contiguous()
100
+ ee_time_decay = (torch.exp(e_time_decay)).contiguous()
101
+ assert ee_time_decay.dtype == torch.float32
102
+ ctx.save_for_backward(receptance, key, value, ee_time_decay, e_time_decay, time_first)
103
+ out = torch.empty(
104
+ (batch, seq_length, hidden_size),
105
+ device=receptance.device,
106
+ dtype=torch.bfloat16,
107
+ memory_format=torch.contiguous_format,
108
+ )
109
+ state = state.clone()
110
+ rwkv5_cuda_kernel.forward_bf16(
111
+ batch,
112
+ seq_length,
113
+ hidden_size,
114
+ num_heads,
115
+ state,
116
+ receptance,
117
+ key,
118
+ value,
119
+ ee_time_decay,
120
+ time_first,
121
+ out,
122
+ )
123
+ return out, state
124
+
125
+ @staticmethod
126
+ def backward(ctx, gout):
127
+ with torch.no_grad():
128
+ assert gout.dtype == torch.bfloat16
129
+ batch = ctx.batch
130
+ seq_length = ctx.seq_length
131
+ hidden_size = ctx.hidden_size
132
+ num_heads = ctx.num_heads
133
+ receptance, key, value, ee_time_decay, e_time_decay, time_first = ctx.saved_tensors
134
+
135
+ global_shape = (batch, seq_length, hidden_size)
136
+
137
+ # TODO dtype should not be forced here IMO
138
+ greceptance = torch.empty(
139
+ global_shape,
140
+ device=gout.device,
141
+ requires_grad=False,
142
+ dtype=torch.bfloat16,
143
+ memory_format=torch.contiguous_format,
144
+ )
145
+ g_key = torch.empty(
146
+ global_shape,
147
+ device=gout.device,
148
+ requires_grad=False,
149
+ dtype=torch.bfloat16,
150
+ memory_format=torch.contiguous_format,
151
+ )
152
+ g_value = torch.empty(
153
+ global_shape,
154
+ device=gout.device,
155
+ requires_grad=False,
156
+ dtype=torch.bfloat16,
157
+ memory_format=torch.contiguous_format,
158
+ )
159
+ g_time_decay = torch.empty(
160
+ (batch, hidden_size),
161
+ device=gout.device,
162
+ requires_grad=False,
163
+ dtype=torch.bfloat16,
164
+ memory_format=torch.contiguous_format,
165
+ )
166
+ g_time_first = torch.empty(
167
+ (batch, hidden_size),
168
+ device=gout.device,
169
+ requires_grad=False,
170
+ dtype=torch.bfloat16,
171
+ memory_format=torch.contiguous_format,
172
+ )
173
+ rwkv5_cuda_kernel.backward_bf16(
174
+ batch,
175
+ seq_length,
176
+ hidden_size,
177
+ num_heads,
178
+ receptance,
179
+ key,
180
+ value,
181
+ ee_time_decay,
182
+ e_time_decay,
183
+ time_first,
184
+ gout,
185
+ greceptance,
186
+ g_key,
187
+ g_value,
188
+ g_time_decay,
189
+ g_time_first,
190
+ )
191
+ head_size = hidden_size // num_heads
192
+ g_time_decay = torch.sum(g_time_decay, 0).view(num_heads, head_size)
193
+ g_time_first = torch.sum(g_time_first, 0).view(num_heads, head_size)
194
+ return (None, None, None, None, greceptance, g_key, g_value, g_time_decay, g_time_first)
195
+
196
+
197
+ def rwkv5_linear_attention_cpu(receptance, key, value, time_decay, time_first, state):
198
+ input_dtype = receptance.dtype
199
+ # For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed
200
+ # within a torch.no_grad.
201
+ batch, seq_length, hidden_size = receptance.shape
202
+ num_heads, head_size = time_first.shape
203
+ key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1)
204
+ value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
205
+ receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
206
+ time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1, 1, 1).reshape(num_heads, -1, 1)
207
+ time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1)
208
+ out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size)
209
+
210
+ for current_index in range(seq_length):
211
+ current_receptance = receptance[:, :, current_index:current_index+1, :]
212
+ current_key = key[:, :, :, current_index:current_index+1]
213
+ current_value = value[:, :, current_index:current_index+1, :]
214
+ attention_output = current_key @ current_value
215
+ out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2)
216
+ with torch.no_grad():
217
+ state = attention_output + time_decay * state
218
+
219
+ return out, state
220
+
221
+ # copied from RWKV but with receptance
222
+ def RWKV5_linear_attention(training, receptance, key, value, time_decay, time_first, state):
223
+ no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, key, value])
224
+ # Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
225
+ # in this case).
226
+ one_token = key.size(1) == 1
227
+ if not training or rwkv5_cuda_kernel is None or no_cuda or one_token:
228
+ return rwkv5_linear_attention_cpu(
229
+ receptance, key, value, time_decay, time_first, state
230
+ )
231
+ else:
232
+ return Rwkv5LinearAttention.apply(receptance, key, value, time_decay, time_first, state)
233
+
234
+
235
+ class Rwkv5SelfAttention(nn.Module):
236
+ def __init__(self, config, layer_id=0):
237
+ super().__init__()
238
+ self.config = config
239
+ kernel_loaded = rwkv5_cuda_kernel is not None and rwkv5_cuda_kernel.head_size == config.head_size
240
+ if is_ninja_available() and is_torch_cuda_available() and not kernel_loaded:
241
+ try:
242
+ load_wkv5_cuda_kernel(config.head_size)
243
+ except Exception:
244
+ logger.info("Could not load the custom CUDA kernel for RWKV5 attention.")
245
+ self.layer_id = layer_id
246
+ hidden_size = config.hidden_size
247
+ attention_hidden_size = config.attention_hidden_size
248
+ self.attention_hidden_size = attention_hidden_size
249
+ head_size = config.head_size
250
+ num_heads = attention_hidden_size // head_size
251
+
252
+ self.time_decay = nn.Parameter(torch.empty(num_heads, head_size))
253
+ self.time_faaaa = nn.Parameter(torch.empty(num_heads, head_size))
254
+ self.time_mix_gate = nn.Parameter(torch.empty(1, 1, hidden_size))
255
+
256
+ self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
257
+ self.time_mix_value = nn.Parameter(torch.empty(1, 1, hidden_size))
258
+ self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size))
259
+
260
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
261
+ self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False)
262
+ self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False)
263
+ self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
264
+ self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
265
+ self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
266
+ self.ln_x = nn.GroupNorm(num_heads, hidden_size)
267
+
268
+ def extract_key_value(self, hidden, state=None):
269
+ # Mix hidden with the previous timestep to produce key, value, receptance
270
+ if hidden.size(1) == 1 and state is not None:
271
+ shifted = state[0][:, :, self.layer_id]
272
+ else:
273
+ shifted = self.time_shift(hidden)
274
+ if state is not None:
275
+ shifted[:, 0] = state[0][:, :, self.layer_id]
276
+ if len(shifted.size()) == 2:
277
+ shifted = shifted.unsqueeze(1)
278
+
279
+ key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
280
+ value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value)
281
+ receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
282
+ gate = hidden * self.time_mix_gate + shifted * (1 - self.time_mix_gate)
283
+
284
+ key = self.key(key)
285
+ value = self.value(value)
286
+ receptance = self.receptance(receptance)
287
+ gate = F.silu(self.gate(gate))
288
+
289
+ if state is not None:
290
+ state[0][:, :, self.layer_id] = hidden[:, -1]
291
+
292
+ return receptance, key, value, gate, state
293
+
294
+ def forward(self, hidden, state=None, use_cache=False, seq_mode=True):
295
+ receptance, key, value, gate, state = self.extract_key_value(hidden, state=state)
296
+
297
+ B,T,C = receptance.shape
298
+ H, S = self.time_faaaa.shape
299
+
300
+ layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
301
+ out, layer_state = RWKV5_linear_attention(
302
+ self.training, receptance, key, value, self.time_decay, self.time_faaaa, layer_state
303
+ )
304
+
305
+ if layer_state is not None:
306
+ state[1][:, :, :, :, self.layer_id] = layer_state
307
+
308
+ out = out.reshape(B * T, H * S)
309
+ out = F.group_norm(out / self.config.head_size_divisor, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S)
310
+ out = out.to(dtype=hidden.dtype) * gate
311
+ out = self.output(out)
312
+ return out, state
313
+
314
+ # Copied from rwkv exceot for the intermediate size
315
+ class Rwkv5FeedForward(nn.Module):
316
+ def __init__(self, config, layer_id=0):
317
+ super().__init__()
318
+ self.config = config
319
+ self.layer_id = layer_id
320
+ hidden_size = config.hidden_size
321
+ intermediate_size = (
322
+ config.intermediate_size
323
+ if config.intermediate_size is not None
324
+ else int((config.hidden_size * 3.5) // 32 * 32)
325
+ )
326
+
327
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
328
+ self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
329
+ self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size))
330
+
331
+ self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
332
+ self.receptance = nn.Linear(hidden_size, hidden_size, bias=False)
333
+ self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
334
+
335
+ def forward(self, hidden, state=None):
336
+ if hidden.size(1) == 1 and state is not None:
337
+ shifted = state[2][:, :, self.layer_id]
338
+ else:
339
+ shifted = self.time_shift(hidden)
340
+ if state is not None:
341
+ shifted[:, 0] = state[2][:, :, self.layer_id]
342
+ if len(shifted.size()) == 2:
343
+ shifted = shifted.unsqueeze(1)
344
+ key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
345
+ receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
346
+
347
+ key = torch.square(torch.relu(self.key(key)))
348
+ value = self.value(key)
349
+ receptance = torch.sigmoid(self.receptance(receptance))
350
+
351
+ if state is not None:
352
+ state[2][:, :, self.layer_id] = hidden[:, -1]
353
+
354
+ return receptance * value, state
355
+
356
+
357
+ # Copied from transformers.models.rwkv.modeling_rwkv.RwkvBlock with Rwkv->Rwkv5
358
+ class Rwkv5Block(nn.Module):
359
+ def __init__(self, config, layer_id):
360
+ super().__init__()
361
+ self.config = config
362
+ self.layer_id = layer_id
363
+
364
+ if layer_id == 0:
365
+ self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
366
+
367
+ self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
368
+ self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
369
+
370
+ self.attention = Rwkv5SelfAttention(config, layer_id)
371
+ self.feed_forward = Rwkv5FeedForward(config, layer_id)
372
+
373
+ def forward(self, hidden, state=None, use_cache=False, output_attentions=False, seq_mode=True):
374
+ if self.layer_id == 0:
375
+ hidden = self.pre_ln(hidden)
376
+ attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode)
377
+ hidden = hidden + attention
378
+
379
+ feed_forward, state = self.feed_forward(self.ln2(hidden), state=state)
380
+ hidden = hidden + feed_forward
381
+
382
+ outputs = (hidden, state)
383
+ if output_attentions:
384
+ outputs += (attention,)
385
+ else:
386
+ outputs += (None,)
387
+
388
+ return outputs
389
+
390
+
391
+ # Copied from transformers.models.rwkv.modeling_rwkv.RwkvPreTrainedModel with Rwkv->Rwkv5
392
+ class Rwkv5PreTrainedModel(PreTrainedModel):
393
+ """
394
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
395
+ models.
396
+ """
397
+
398
+ config_class = Rwkv5Config
399
+ base_model_prefix = "rwkv5"
400
+ _no_split_modules = ["Rwkv5Block"]
401
+ _keep_in_fp32_modules = ["time_decay", "time_first"]
402
+ supports_gradient_checkpointing = True
403
+
404
+ def _init_weights(self, module):
405
+ """Initialize the weights."""
406
+ if isinstance(module, Rwkv5SelfAttention):
407
+ layer_id = module.layer_id
408
+ num_hidden_layers = module.config.num_hidden_layers
409
+ hidden_size = module.config.hidden_size
410
+ attention_hidden_size = module.attention_hidden_size
411
+ head_size = module.config.head_size
412
+ num_heads = attention_hidden_size // head_size
413
+
414
+ ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
415
+ ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
416
+
417
+ time_weight = torch.tensor(
418
+ [i / hidden_size for i in range(hidden_size)],
419
+ dtype=module.time_mix_key.dtype,
420
+ device=module.time_mix_key.device,
421
+ )
422
+ time_weight = time_weight[None, None, :]
423
+
424
+ decay_speed = [
425
+ -6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
426
+ for h in range(attention_hidden_size)
427
+ ]
428
+ decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device)
429
+ tmp = torch.tensor(
430
+ [
431
+ (1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1)
432
+ for i in range(attention_hidden_size)
433
+ ],
434
+ dtype=module.time_faaaa.dtype,
435
+ device=module.time_faaaa.device,
436
+ )
437
+
438
+ with torch.no_grad():
439
+ module.time_decay.data = decay_speed.reshape(num_heads, head_size)
440
+ module.time_faaaa.data = tmp.reshape(num_heads, head_size)
441
+ module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
442
+
443
+ module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
444
+ module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
445
+ module.time_mix_gate.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
446
+
447
+ elif isinstance(module, Rwkv5FeedForward):
448
+ layer_id = module.layer_id
449
+ num_hidden_layers = module.config.num_hidden_layers
450
+ hidden_size = module.config.hidden_size
451
+
452
+ ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
453
+
454
+ time_weight = torch.tensor(
455
+ [i / hidden_size for i in range(hidden_size)],
456
+ dtype=module.time_mix_key.dtype,
457
+ device=module.time_mix_key.device,
458
+ )
459
+ time_weight = time_weight[None, None, :]
460
+
461
+ with torch.no_grad():
462
+ module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
463
+ module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0)
464
+
465
+
466
+ # Copied from transformers.models.rwkv.modeling_rwkv.RwkvOutput with Rwkv->Rwkv5
467
+ @dataclass
468
+ class Rwkv5Output(ModelOutput):
469
+ """
470
+ Class for the RWKV5 model outputs.
471
+
472
+ Args:
473
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
474
+ Sequence of hidden-states at the output of the last layer of the model.
475
+ state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
476
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
477
+ avoid providing the old `input_ids`.
478
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
479
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
480
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
481
+ the model at the output of each layer plus the optional initial embedding outputs.
482
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
483
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
484
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
485
+ the self-attention heads.
486
+ """
487
+
488
+ last_hidden_state: torch.FloatTensor = None
489
+ state: Optional[List[torch.FloatTensor]] = None
490
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
491
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
492
+
493
+
494
+ # Copied from transformers.models.rwkv.modeling_rwkv.RwkvCausalLMOutput with Rwkv->Rwkv5
495
+ @dataclass
496
+ class Rwkv5CausalLMOutput(ModelOutput):
497
+ """
498
+ Base class for causal language model (or autoregressive) outputs.
499
+
500
+ Args:
501
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
502
+ Language modeling loss (for next-token prediction).
503
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
504
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
505
+ state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
506
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
507
+ avoid providing the old `input_ids`.
508
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
509
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
510
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
511
+ the model at the output of each layer plus the optional initial embedding outputs.
512
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
513
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
514
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
515
+ the self-attention heads.
516
+ """
517
+
518
+ loss: Optional[torch.FloatTensor] = None
519
+ logits: torch.FloatTensor = None
520
+ state: Optional[List[torch.FloatTensor]] = None
521
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
522
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
523
+
524
+
525
+ RWKV5_START_DOCSTRING = r"""
526
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
527
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
528
+ etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
529
+ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
530
+ general usage and behavior.
531
+
532
+ Parameters:
533
+ config ([`Rwkv5Config`]): Model configuration class with all the parameters of the model.
534
+ Initializing with a config file does not load the weights associated with the model, only the
535
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
536
+ """
537
+
538
+ RWKV5_INPUTS_DOCSTRING = r"""
539
+ Args:
540
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
541
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
542
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
543
+ sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their
544
+ past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See
545
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
546
+ IDs?](../glossary#input-ids)
547
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
548
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
549
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
550
+ model's internal embedding lookup matrix.
551
+ state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*):
552
+ If passed along, the model uses the previous state in all the blocks (which will give the output for the
553
+ `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
554
+ use_cache (`bool`, *optional*):
555
+ If set to `True`, the last state is returned and can be used to quickly generate the next logits.
556
+ output_attentions (`bool`, *optional*):
557
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
558
+ tensors for more detail.
559
+ output_hidden_states (`bool`, *optional*):
560
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
561
+ more detail.
562
+ return_dict (`bool`, *optional*):
563
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
564
+ """
565
+
566
+
567
+ @add_start_docstrings(
568
+ "The bare RWKV5 Model transformer outputting raw hidden-states without any specific head on top.",
569
+ RWKV5_START_DOCSTRING,
570
+ )
571
+ class Rwkv5Model(Rwkv5PreTrainedModel):
572
+ def __init__(self, config):
573
+ super().__init__(config)
574
+
575
+ self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
576
+ self.blocks = nn.ModuleList([Rwkv5Block(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
577
+ self.ln_out = nn.LayerNorm(config.hidden_size)
578
+
579
+ self.layers_are_rescaled = False
580
+ self.gradient_checkpointing = False
581
+
582
+ # Initialize weights and apply final processing
583
+ self.post_init()
584
+
585
+ def get_input_embeddings(self):
586
+ return self.embeddings
587
+
588
+ def set_input_embeddings(self, new_embeddings):
589
+ self.embeddings = new_embeddings
590
+
591
+ @add_start_docstrings_to_model_forward(RWKV5_INPUTS_DOCSTRING)
592
+ @add_code_sample_docstrings(
593
+ checkpoint=_CHECKPOINT_FOR_DOC,
594
+ output_type=Rwkv5Output,
595
+ config_class=_CONFIG_FOR_DOC,
596
+ )
597
+ def forward(
598
+ self,
599
+ input_ids: Optional[torch.LongTensor] = None,
600
+ attention_mask: Optional[torch.LongTensor] = None, # noqa
601
+ inputs_embeds: Optional[torch.FloatTensor] = None,
602
+ state: Optional[List[torch.FloatTensor]] = None,
603
+ use_cache: Optional[bool] = None,
604
+ output_attentions: Optional[bool] = None,
605
+ output_hidden_states: Optional[bool] = None,
606
+ return_dict: Optional[bool] = None,
607
+ ) -> Union[Tuple, Rwkv5Output]:
608
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
609
+ output_hidden_states = (
610
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
611
+ )
612
+ # FIXME - training is supportable with the CUDA code
613
+ # rwkv5 only support inference in huggingface.
614
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
615
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
616
+
617
+ if self.training == self.layers_are_rescaled and (
618
+ self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16
619
+ ):
620
+ self._rescale_layers()
621
+
622
+ if input_ids is not None and inputs_embeds is not None:
623
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
624
+ elif input_ids is None and inputs_embeds is None:
625
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
626
+
627
+ if inputs_embeds is None:
628
+ inputs_embeds = self.embeddings(input_ids)
629
+
630
+ if state is None:
631
+ state = []
632
+ head_size = self.config.head_size
633
+ num_heads = self.config.attention_hidden_size // head_size
634
+ state_attn_x = torch.zeros(
635
+ (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
636
+ dtype=inputs_embeds.dtype,
637
+ requires_grad=False,
638
+ device=inputs_embeds.device,
639
+ ).contiguous()
640
+ state_attn_kv = torch.zeros(
641
+ (
642
+ inputs_embeds.size(0),
643
+ num_heads,
644
+ head_size,
645
+ head_size,
646
+ self.config.num_hidden_layers,
647
+ ),
648
+ dtype=torch.float32,
649
+ requires_grad=False,
650
+ device=inputs_embeds.device,
651
+ ).contiguous()
652
+ state_ffn_x = torch.zeros(
653
+ (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
654
+ dtype=inputs_embeds.dtype,
655
+ requires_grad=False,
656
+ device=inputs_embeds.device,
657
+ ).contiguous()
658
+ state.append(state_attn_x)
659
+ state.append(state_attn_kv)
660
+ state.append(state_ffn_x)
661
+
662
+ seq_mode = inputs_embeds.shape[1] > 1
663
+ hidden_states = inputs_embeds
664
+
665
+ all_self_attentions = () if output_attentions else None
666
+ all_hidden_states = () if output_hidden_states else None
667
+ for idx, block in enumerate(self.blocks):
668
+ hidden_states, state, attentions = block(
669
+ hidden_states, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode
670
+ )
671
+ if (
672
+ self.layers_are_rescaled
673
+ and self.config.rescale_every > 0
674
+ and (idx + 1) % self.config.rescale_every == 0
675
+ ):
676
+ hidden_states = hidden_states / 2
677
+
678
+ if output_hidden_states:
679
+ all_hidden_states = all_hidden_states + (hidden_states,)
680
+
681
+ if output_attentions:
682
+ all_self_attentions = all_self_attentions + (attentions,)
683
+
684
+ hidden_states = self.ln_out(hidden_states)
685
+
686
+ if output_hidden_states:
687
+ all_hidden_states = all_hidden_states + (hidden_states,)
688
+
689
+ if not return_dict:
690
+ return (hidden_states, state, all_hidden_states, all_self_attentions)
691
+
692
+ return Rwkv5Output(
693
+ last_hidden_state=hidden_states,
694
+ state=state,
695
+ hidden_states=all_hidden_states, # None
696
+ attentions=all_self_attentions, # None
697
+ )
698
+
699
+ def _rescale_layers(self):
700
+ # Layers should be rescaled for inference only.
701
+ if self.layers_are_rescaled == (not self.training):
702
+ return
703
+ if self.config.rescale_every > 0:
704
+ with torch.no_grad():
705
+ for block_id, block in enumerate(self.blocks):
706
+ if self.training:
707
+ block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
708
+ block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
709
+ else:
710
+ # Deal with quantization statistics
711
+ if hasattr(block.attention.output.weight, "SCB"):
712
+ block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
713
+ block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
714
+ elif hasattr(block.attention.output.weight, "quant_state"):
715
+ self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id)
716
+ self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id)
717
+ else:
718
+ block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
719
+ block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
720
+
721
+ self.layers_are_rescaled = not self.training
722
+
723
+ def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id):
724
+ r"""
725
+ Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will
726
+ be quantized again.
727
+ """
728
+ if not is_bitsandbytes_available():
729
+ raise ImportError("Please install bitsandbytes to use this method.")
730
+ import bitsandbytes as bnb
731
+
732
+ dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state)
733
+
734
+ dequant_weights.div_(2 ** int(block_id // self.config.rescale_every))
735
+
736
+ # re-quantize the model:
737
+ # we need to put it first on CPU then back to the device
738
+ # this will create an overhead :/
739
+ # We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid
740
+ # bugs with bnb
741
+ quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device)
742
+ setattr(target_layer, "weight", quant_weight)
743
+
744
+
745
+ # copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
746
+ @add_start_docstrings(
747
+ """
748
+ The RWKV5 Model transformer with a language modeling head on top (linear layer with weights tied to the input
749
+ embeddings).
750
+ """,
751
+ RWKV5_START_DOCSTRING,
752
+ )
753
+ # Copied from transformers.models.rwkv.modeling_rwkv.RwkvForCausalLM with Rwkv->Rwkv5
754
+ class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
755
+ _tied_weights_keys = ["head.weight"]
756
+
757
+ def __init__(self, config):
758
+ super().__init__(config)
759
+ self.rwkv = Rwkv5Model(config)
760
+ self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
761
+
762
+ # Initialize weights and apply final processing
763
+ self.post_init()
764
+
765
+ def get_output_embeddings(self):
766
+ return self.head
767
+
768
+ def set_output_embeddings(self, new_embeddings):
769
+ self.head = new_embeddings
770
+
771
+ def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs):
772
+ # only last token for inputs_ids if the state is passed along.
773
+ if state is not None:
774
+ input_ids = input_ids[:, -1].unsqueeze(-1)
775
+
776
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
777
+ if inputs_embeds is not None and state is None:
778
+ model_inputs = {"inputs_embeds": inputs_embeds}
779
+ else:
780
+ model_inputs = {"input_ids": input_ids}
781
+
782
+ model_inputs["state"] = state
783
+ return model_inputs
784
+
785
+ @add_start_docstrings_to_model_forward(RWKV5_INPUTS_DOCSTRING)
786
+ @add_code_sample_docstrings(
787
+ checkpoint=_CHECKPOINT_FOR_DOC,
788
+ output_type=Rwkv5CausalLMOutput,
789
+ config_class=_CONFIG_FOR_DOC,
790
+ )
791
+ def forward(
792
+ self,
793
+ input_ids: Optional[torch.LongTensor] = None,
794
+ attention_mask: Optional[torch.LongTensor] = None,
795
+ inputs_embeds: Optional[torch.FloatTensor] = None,
796
+ state: Optional[List[torch.FloatTensor]] = None,
797
+ labels: Optional[torch.LongTensor] = None,
798
+ use_cache: Optional[bool] = None,
799
+ output_attentions: Optional[bool] = None,
800
+ output_hidden_states: Optional[bool] = None,
801
+ return_dict: Optional[bool] = None,
802
+ ) -> Union[Tuple, Rwkv5CausalLMOutput]:
803
+ r"""
804
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
805
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
806
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
807
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
808
+ """
809
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
810
+
811
+ outputs = self.rwkv(
812
+ input_ids,
813
+ inputs_embeds=inputs_embeds,
814
+ state=state,
815
+ use_cache=use_cache,
816
+ output_attentions=output_attentions,
817
+ output_hidden_states=output_hidden_states,
818
+ return_dict=return_dict,
819
+ )
820
+ hidden_states = outputs[0]
821
+
822
+ logits = self.head(hidden_states)
823
+
824
+ loss = None
825
+ if labels is not None:
826
+ # move labels to correct device to enable model parallelism
827
+ labels = labels.to(logits.device)
828
+ # Shift so that tokens < n predict n
829
+ shift_logits = logits[..., :-1, :].contiguous()
830
+ shift_labels = labels[..., 1:].contiguous()
831
+ # Flatten the tokens
832
+ loss_fct = CrossEntropyLoss()
833
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
834
+
835
+ if not return_dict:
836
+ output = (logits,) + outputs[1:]
837
+ return ((loss,) + output) if loss is not None else output
838
+
839
+ return Rwkv5CausalLMOutput(
840
+ loss=loss,
841
+ logits=logits,
842
+ state=outputs.state,
843
+ hidden_states=outputs.hidden_states,
844
+ attentions=outputs.attentions,
845
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:277fcb7726967bb35d0c2790be7edde1fbebc0ed3336fde4e10303270dbf1947
3
+ size 3155572993
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenization_rwkv5.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for RWKV5."""
16
+
17
+ import os
18
+ from typing import TYPE_CHECKING, List, Optional, Tuple
19
+ import re
20
+
21
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
+ from transformers.utils import logging
23
+
24
+
25
+ if TYPE_CHECKING:
26
+ pass
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {
31
+ "vocab_file": "vocab.txt",
32
+ }
33
+ PRETRAINED_VOCAB_FILES_MAP = {
34
+ "vocab_file": {
35
+ "ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt",
36
+ },
37
+ }
38
+
39
+
40
+
41
+ def whitespace_tokenize(text):
42
+ """Runs basic whitespace cleaning and splitting on a piece of text.
43
+ The separators are kept
44
+ """
45
+ text = text.strip()
46
+ if not text:
47
+ return []
48
+ tokens = re.split(b"(?= )", text)
49
+ return tokens
50
+
51
+
52
+ class WordpieceTokenizer(object):
53
+ """Runs WordPiece tokenization."""
54
+
55
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
56
+ self.vocab = vocab
57
+ self.unk_token = unk_token
58
+ self.max_input_chars_per_word = max_input_chars_per_word
59
+
60
+ def tokenize(self, text):
61
+ """
62
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
63
+ tokenization using the given vocabulary.
64
+
65
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
66
+
67
+ Args:
68
+ text: A single token or whitespace separated tokens. This should have
69
+ already been passed through *BasicTokenizer*.
70
+
71
+ Returns:
72
+ A list of wordpiece tokens.
73
+ """
74
+
75
+ output_tokens = []
76
+ for token in whitespace_tokenize(text):
77
+ chars = list(token)
78
+ if len(chars) > self.max_input_chars_per_word:
79
+ output_tokens.append(self.unk_token)
80
+ continue
81
+
82
+ is_bad = False
83
+ start = 0
84
+ sub_tokens = []
85
+ while start < len(chars):
86
+ end = len(chars)
87
+ cur_substr = None
88
+ while start < end:
89
+ substr = bytes(chars[start:end])
90
+ if substr in self.vocab:
91
+ cur_substr = substr
92
+ break
93
+ end -= 1
94
+ if cur_substr is None:
95
+ is_bad = True
96
+ break
97
+ sub_tokens.append(cur_substr.decode())
98
+ start = end
99
+
100
+ if is_bad:
101
+ output_tokens.append(self.unk_token)
102
+ else:
103
+ output_tokens.extend(sub_tokens)
104
+ return output_tokens
105
+
106
+
107
+ class Rwkv5Tokenizer(PreTrainedTokenizer):
108
+ vocab_files_names = VOCAB_FILES_NAMES
109
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
110
+ max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048}
111
+
112
+ model_input_names = ["input_ids", "attention_mask"]
113
+
114
+ def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", pad_token="<s>",**kwargs):
115
+ if not os.path.isfile(vocab_file):
116
+ raise ValueError(
117
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
118
+ " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
119
+ )
120
+
121
+ with open(vocab_file, "r") as reader:
122
+ tokens = reader.readlines()
123
+ vocab = {}
124
+ for index, token in enumerate(tokens):
125
+ token = eval(token.rstrip("\n"))
126
+ vocab[token] = index
127
+
128
+ self.add_bos_token = True
129
+ self.encoder = vocab
130
+ self.decoder = {v: k for k, v in vocab.items()}
131
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
132
+ self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
133
+ super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, **kwargs)
134
+
135
+ @property
136
+ def vocab_size(self):
137
+ return len(self.encoder)
138
+
139
+ def get_vocab(self):
140
+ vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
141
+ vocab.update(self.added_tokens_encoder)
142
+ return vocab
143
+
144
+ def _tokenize(self, text, split_special_tokens=False):
145
+ return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
146
+
147
+ def _convert_token_to_id(self, token):
148
+ """Converts a token (byte) to an id using the vocab."""
149
+ if not isinstance(token, bytes):
150
+ token = token.encode("utf-8", errors="replace")
151
+ return self.encoder.get(token, self.unk_token_id)
152
+
153
+ def _convert_id_to_token(self, index):
154
+ """Converts an index (integer) in a token (byte) using the vocab."""
155
+ token = self.decoder.get(index, self.unk_token)
156
+ if isinstance(token, (bytes)):
157
+ token = token.decode("utf-8", errors="replace")
158
+ return token
159
+
160
+ def convert_tokens_to_string(self, tokens):
161
+ """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
162
+ out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode(
163
+ "utf-8"
164
+ )
165
+ return out_string
166
+
167
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
168
+ index = 0
169
+ if os.path.isdir(save_directory):
170
+ vocab_file = os.path.join(
171
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
172
+ )
173
+ else:
174
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
175
+ with open(vocab_file, "w") as writer:
176
+ for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]):
177
+ if index != token_index:
178
+ logger.warning(
179
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
180
+ " Please check that the vocabulary is not corrupted!"
181
+ )
182
+ index = token_index
183
+ writer.write(str(token) + "\n")
184
+ index += 1
185
+ return (vocab_file,)
186
+
187
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
188
+ if self.add_bos_token:
189
+ bos_token_ids = [self.bos_token_id]
190
+ else:
191
+ bos_token_ids = []
192
+
193
+ output = bos_token_ids + token_ids_0
194
+
195
+ if token_ids_1 is None:
196
+ return output
197
+
198
+ return output + bos_token_ids + token_ids_1
199
+
200
+ def get_special_tokens_mask(
201
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
202
+ ) -> List[int]:
203
+ """
204
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
205
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
206
+
207
+ Args:
208
+ token_ids_0 (`List[int]`):
209
+ List of IDs.
210
+ token_ids_1 (`List[int]`, *optional*):
211
+ Optional second list of IDs for sequence pairs.
212
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
213
+ Whether or not the token list is already formatted with special tokens for the model.
214
+
215
+ Returns:
216
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
217
+ """
218
+ if already_has_special_tokens:
219
+ return super().get_special_tokens_mask(
220
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
221
+ )
222
+
223
+ if not self.add_bos_token:
224
+ return super().get_special_tokens_mask(
225
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
226
+ )
227
+
228
+ if token_ids_1 is None:
229
+ return [1] + ([0] * len(token_ids_0))
230
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
tokenizer_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_rwkv5.Rwkv5Tokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "added_tokens_decoder": {
9
+ "0": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false,
15
+ "special": false
16
+ }
17
+ },
18
+ "bos_token": "<s>",
19
+ "clean_up_tokenization_spaces": true,
20
+ "eos_token": "<s>",
21
+ "model_max_length": 1000000000000000019884624838656,
22
+ "unk_token": "<s>"
23
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff