Smone55 commited on
Commit
8942896
1 Parent(s): 9543e60

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.01 +/- 0.68
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e78f3f03280e79ceeac2a35292140051117b6dc0a08e7a46ead1411c666d15
3
+ size 109959
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5f1724eb90>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f5f1723f440>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1685389226483838807,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAKsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAMMSaPymE2T84ZCU+r6WzP9Egmz/qIsi+EUyhPgOHhD8H6zu/u44SP/ELZz6q3Zu/8zW4PqtlYL04sGQ+hWqFvz4fb7yJU6k+H+CePlx6tb9CQyM+eBLbvzfXlb8t0IC+lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAAAqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5juUaA5LCEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]]",
38
+ "desired_goal": "[[ 1.2091122 1.6993457 0.16151512]\n [ 1.4034938 1.211939 -0.39089137]\n [ 0.31503347 1.0353702 -0.734055 ]\n [ 0.5724904 0.22563149 -1.2177022 ]\n [ 0.3597866 -0.05478446 0.22332847]\n [-1.0423132 -0.01459485 0.33071545]\n [ 0.31030366 -1.4177966 0.15943626]\n [-1.7115011 -1.1706303 -0.25158826]]",
39
+ "observation": "[[0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAAlvMPVuD5LgxXjI+7VS2PWR5zL2OB3c+WdfIPfOv6D2y7wY+NGbmPQhZdr1DZFo+9D1PPQMGgb1bX2c+5ACFPZn3Rb17J4A9v+NmPTpdgL1oUy4+U5dhPVuIB77ar809lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 9.97829586e-02 -1.08963541e-04 1.74187437e-01]\n [ 8.90291706e-02 -9.98409092e-02 2.41239756e-01]\n [ 9.80669931e-02 1.13616847e-01 1.31773740e-01]\n [ 1.12499624e-01 -6.01435006e-02 2.13273093e-01]\n [ 5.05961925e-02 -6.29997477e-02 2.25949690e-01]\n [ 6.49431050e-02 -4.83318307e-02 6.25753030e-02]\n [ 5.63695394e-02 -6.26778156e-02 1.70240045e-01]\n [ 5.50759546e-02 -1.32356092e-01 1.00433066e-01]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId554zhYQB8CUhpRSlIwBbJRLMowBdJRHQKWB40D2alV1fZQoaAZoCWgPQwgguMoTCDsEwJSGlFKUaBVLMmgWR0ClgYhbfP5YdX2UKGgGaAloD0MIIxYx7DBmBcCUhpRSlGgVSzJoFkdApYEtj9XLeXV9lChoBmgJaA9DCCzTLxFvnf+/lIaUUpRoFUsyaBZHQKWAyTJyQxN1fZQoaAZoCWgPQwj4+lqXGrEUwJSGlFKUaBVLMmgWR0ClhZgWzniedX2UKGgGaAloD0MIjj9R2bDm/7+UhpRSlGgVSzJoFkdApYUzc6/7BXV9lChoBmgJaA9DCJDaxMn9LhLAlIaUUpRoFUsyaBZHQKWE05Etuk11fZQoaAZoCWgPQwhmM4ekFuoBwJSGlFKUaBVLMmgWR0ClhH2dd3SsdX2UKGgGaAloD0MIG6A01ChEAMCUhpRSlGgVSzJoFkdApYQn+sHSnnV9lChoBmgJaA9DCO9YbJOKBgnAlIaUUpRoFUsyaBZHQKWDzcZccEN1fZQoaAZoCWgPQwi/R/31CmsIwJSGlFKUaBVLMmgWR0Clg3OWBz3idX2UKGgGaAloD0MIodl1b0UCDsCUhpRSlGgVSzJoFkdApYMPvhIe5nV9lChoBmgJaA9DCNS4N79h4gDAlIaUUpRoFUsyaBZHQKWIXhWo3rF1fZQoaAZoCWgPQwidf7vs130IwJSGlFKUaBVLMmgWR0Clh/m0mdAgdX2UKGgGaAloD0MIgC2vXG+bDMCUhpRSlGgVSzJoFkdApYeZ/I8yOHV9lChoBmgJaA9DCHjUmBBzSf2/lIaUUpRoFUsyaBZHQKWHRC/oJRh1fZQoaAZoCWgPQwhFDhE3p/IFwJSGlFKUaBVLMmgWR0Clhu6nzg/DdX2UKGgGaAloD0MIGw+22O2TB8CUhpRSlGgVSzJoFkdApYaU/dIoVnV9lChoBmgJaA9DCGMraFpiJQnAlIaUUpRoFUsyaBZHQKWGO3zcynF1fZQoaAZoCWgPQwiBIhYx7HABwJSGlFKUaBVLMmgWR0ClhdgjyFwldX2UKGgGaAloD0MIZjIcz2fgAMCUhpRSlGgVSzJoFkdApYtg5eZ5RnV9lChoBmgJaA9DCDJYcaq1UAzAlIaUUpRoFUsyaBZHQKWK/L1VYIV1fZQoaAZoCWgPQwgwnkFD/yQSwJSGlFKUaBVLMmgWR0Clip0wSJ0odX2UKGgGaAloD0MIkWEVb2RuEcCUhpRSlGgVSzJoFkdApYpHZsbednV9lChoBmgJaA9DCFZjCWtjfBDAlIaUUpRoFUsyaBZHQKWJ8dxyXD51fZQoaAZoCWgPQwgsnnqkwU0GwJSGlFKUaBVLMmgWR0CliZg4n4O+dX2UKGgGaAloD0MI6ukj8IdfCsCUhpRSlGgVSzJoFkdApYk/EdeY2XV9lChoBmgJaA9DCFEWvr7WBQ7AlIaUUpRoFUsyaBZHQKWI2+LWI451fZQoaAZoCWgPQwiA1CZO7ncIwJSGlFKUaBVLMmgWR0Cljl4PGyX2dX2UKGgGaAloD0MIAFKbOLlf/7+UhpRSlGgVSzJoFkdApY35wuM+/3V9lChoBmgJaA9DCBk5C3vaofq/lIaUUpRoFUsyaBZHQKWNmg2606Z1fZQoaAZoCWgPQwhVhQZi2Uz5v5SGlFKUaBVLMmgWR0CljURTsIE9dX2UKGgGaAloD0MIXtbEAl/RCsCUhpRSlGgVSzJoFkdApYzu2RaHK3V9lChoBmgJaA9DCK5lMhzPxwPAlIaUUpRoFUsyaBZHQKWMlZeRgZ11fZQoaAZoCWgPQwhQ3zKny+L1v5SGlFKUaBVLMmgWR0CljDvtUn5SdX2UKGgGaAloD0MIyeaqeY4oBsCUhpRSlGgVSzJoFkdApYvYbXHzYnV9lChoBmgJaA9DCLNF0m70sQXAlIaUUpRoFUsyaBZHQKWRCv8IiTt1fZQoaAZoCWgPQwg2PpP989QCwJSGlFKUaBVLMmgWR0ClkKWSt/4JdX2UKGgGaAloD0MIvAfovpx5B8CUhpRSlGgVSzJoFkdApZBFG9YfXHV9lChoBmgJaA9DCPOqzmqBPQbAlIaUUpRoFUsyaBZHQKWP7slb/wR1fZQoaAZoCWgPQwhKfO4E+68SwJSGlFKUaBVLMmgWR0Clj5i5NGmUdX2UKGgGaAloD0MI/FQVGojlBMCUhpRSlGgVSzJoFkdApY8987ZFonV9lChoBmgJaA9DCKG/0CNGrxDAlIaUUpRoFUsyaBZHQKWO4zmfXf91fZQoaAZoCWgPQwhnDd5X5cL+v5SGlFKUaBVLMmgWR0Cljn75M10ldX2UKGgGaAloD0MIeZRKeEIPD8CUhpRSlGgVSzJoFkdApZK1uzhP03V9lChoBmgJaA9DCHjvqDEhJgHAlIaUUpRoFUsyaBZHQKWSULAHmih1fZQoaAZoCWgPQwjpK0gzFk0SwJSGlFKUaBVLMmgWR0ClkfAqur6tdX2UKGgGaAloD0MI8S2sG++OA8CUhpRSlGgVSzJoFkdApZGZmTTvzHV9lChoBmgJaA9DCHcwYp8ACvu/lIaUUpRoFUsyaBZHQKWRQ4jKPn11fZQoaAZoCWgPQwhJg9vawjMAwJSGlFKUaBVLMmgWR0ClkOjriVB2dX2UKGgGaAloD0MIGLFPAMUoAMCUhpRSlGgVSzJoFkdApZCOKyfL93V9lChoBmgJaA9DCDeLFwtDBAjAlIaUUpRoFUsyaBZHQKWQKctoSL91fZQoaAZoCWgPQwiquHGL+VkAwJSGlFKUaBVLMmgWR0CllHj59E1EdX2UKGgGaAloD0MIFJUNayqLAcCUhpRSlGgVSzJoFkdApZQT3M6ikHV9lChoBmgJaA9DCKoPJO8cqgPAlIaUUpRoFUsyaBZHQKWTs1qnFYN1fZQoaAZoCWgPQwiK52wBoRUEwJSGlFKUaBVLMmgWR0Clk1zHS4OMdX2UKGgGaAloD0MIQfLOoQz1BMCUhpRSlGgVSzJoFkdApZMGaDwpfHV9lChoBmgJaA9DCNVamIV2bgHAlIaUUpRoFUsyaBZHQKWSq89wFTx1fZQoaAZoCWgPQwjPg7uzdlv+v5SGlFKUaBVLMmgWR0ClklE4NqgzdX2UKGgGaAloD0MISgfr/xymDMCUhpRSlGgVSzJoFkdApZHs74i5eHV9lChoBmgJaA9DCIlA9Q8iWQjAlIaUUpRoFUsyaBZHQKWWJDlYEGJ1fZQoaAZoCWgPQwj3BfTCnSsQwJSGlFKUaBVLMmgWR0Cllb8twrDqdX2UKGgGaAloD0MIsFkuG52jE8CUhpRSlGgVSzJoFkdApZVez4UN8XV9lChoBmgJaA9DCJOLMbCOYw7AlIaUUpRoFUsyaBZHQKWVCDlHSWt1fZQoaAZoCWgPQwjyzwziA7sMwJSGlFKUaBVLMmgWR0CllLIwM6RydX2UKGgGaAloD0MIHlTiOsYVCsCUhpRSlGgVSzJoFkdApZRXVqesgnV9lChoBmgJaA9DCDJxqyAGOgDAlIaUUpRoFUsyaBZHQKWT/I0ZWJd1fZQoaAZoCWgPQwhtjnObcM8CwJSGlFKUaBVLMmgWR0Clk5g5R0lrdX2UKGgGaAloD0MI5GpkV1pmA8CUhpRSlGgVSzJoFkdApZfpkZrHl3V9lChoBmgJaA9DCLQglPdxFALAlIaUUpRoFUsyaBZHQKWXhCkXUH91fZQoaAZoCWgPQwgc7iO3Jq0SwJSGlFKUaBVLMmgWR0CllyODzyz5dX2UKGgGaAloD0MIRwA3ixeLA8CUhpRSlGgVSzJoFkdApZbNEw35vnV9lChoBmgJaA9DCN8a2CrB4gPAlIaUUpRoFUsyaBZHQKWWdvrGBFx1fZQoaAZoCWgPQwiJYYcx6W/9v5SGlFKUaBVLMmgWR0CllhwyAQQMdX2UKGgGaAloD0MIBz9xAP3+/7+UhpRSlGgVSzJoFkdApZXBUBGQS3V9lChoBmgJaA9DCDBHj9/bdAnAlIaUUpRoFUsyaBZHQKWVXNY8uBd1fZQoaAZoCWgPQwjGounsZHD9v5SGlFKUaBVLMmgWR0ClmaEHlfZ3dX2UKGgGaAloD0MIJqyNsRO+BcCUhpRSlGgVSzJoFkdApZk8CDEm6XV9lChoBmgJaA9DCAMkmkARqw3AlIaUUpRoFUsyaBZHQKWY269TP0J1fZQoaAZoCWgPQwhaLEXylUD+v5SGlFKUaBVLMmgWR0ClmIV8kUsWdX2UKGgGaAloD0MIRj8aTpk7AMCUhpRSlGgVSzJoFkdApZgvV09yLnV9lChoBmgJaA9DCCU/4les4QzAlIaUUpRoFUsyaBZHQKWX1IyTINp1fZQoaAZoCWgPQwhK1As+zTkTwJSGlFKUaBVLMmgWR0Cll3nQpnYhdX2UKGgGaAloD0MI4e8XsyXrCsCUhpRSlGgVSzJoFkdApZcVYlpoK3V9lChoBmgJaA9DCAaCABk6dhDAlIaUUpRoFUsyaBZHQKWbSEAYHgR1fZQoaAZoCWgPQwjVCP1Mva4DwJSGlFKUaBVLMmgWR0ClmuLrX18LdX2UKGgGaAloD0MIzt+EQgRcCsCUhpRSlGgVSzJoFkdApZqCTyJ9A3V9lChoBmgJaA9DCOm68IPzqQ3AlIaUUpRoFUsyaBZHQKWaK9/SYw91fZQoaAZoCWgPQwhlVYSbjMoOwJSGlFKUaBVLMmgWR0ClmdW+49X+dX2UKGgGaAloD0MIXr2KjA7oB8CUhpRSlGgVSzJoFkdApZl7Aaef7XV9lChoBmgJaA9DCBNlbynnSwrAlIaUUpRoFUsyaBZHQKWZIBaLXMB1fZQoaAZoCWgPQwjEXihgO/gOwJSGlFKUaBVLMmgWR0ClmLu01IiDdX2UKGgGaAloD0MIDw72JoakB8CUhpRSlGgVSzJoFkdApZz9ilSCOHV9lChoBmgJaA9DCESlETP7/A7AlIaUUpRoFUsyaBZHQKWcmD9Oymh1fZQoaAZoCWgPQwhAEvbtJOL3v5SGlFKUaBVLMmgWR0ClnDfCQ9zPdX2UKGgGaAloD0MICObo8Xu7DcCUhpRSlGgVSzJoFkdApZvhcJMQE3V9lChoBmgJaA9DCAaFQZlGswzAlIaUUpRoFUsyaBZHQKWbiy5Zr591fZQoaAZoCWgPQwg3FhQGZVoNwJSGlFKUaBVLMmgWR0ClmzBysCDFdX2UKGgGaAloD0MIPNujN9xnDMCUhpRSlGgVSzJoFkdApZrV8G9pRHV9lChoBmgJaA9DCNHOaRZot/i/lIaUUpRoFUsyaBZHQKWacbhm5Dt1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 25000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 8
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01eb2e0509a7095cf3cd7434a848b3e52af5ecb71ce28bb2ea61a70ad0080c3e
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed5b95b02ffc02865ade323add8d4eb39c82bd5e159a6019f290f5e5fd643724
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5f1724eb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5f1723f440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685389226483838807, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAKsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/KsKqPs+5Gz17+gw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAMMSaPymE2T84ZCU+r6WzP9Egmz/qIsi+EUyhPgOHhD8H6zu/u44SP/ELZz6q3Zu/8zW4PqtlYL04sGQ+hWqFvz4fb7yJU6k+H+CePlx6tb9CQyM+eBLbvzfXlb8t0IC+lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAAAqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5jsqwqo+z7kbPXv6DD/UPuk6eI8EPPck5juUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]\n [0.3335126 0.038019 0.550697 ]]", "desired_goal": "[[ 1.2091122 1.6993457 0.16151512]\n [ 1.4034938 1.211939 -0.39089137]\n [ 0.31503347 1.0353702 -0.734055 ]\n [ 0.5724904 0.22563149 -1.2177022 ]\n [ 0.3597866 -0.05478446 0.22332847]\n [-1.0423132 -0.01459485 0.33071545]\n [ 0.31030366 -1.4177966 0.15943626]\n [-1.7115011 -1.1706303 -0.25158826]]", "observation": "[[0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]\n [0.3335126 0.038019 0.550697 0.00177952 0.00809085 0.00702345]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAAlvMPVuD5LgxXjI+7VS2PWR5zL2OB3c+WdfIPfOv6D2y7wY+NGbmPQhZdr1DZFo+9D1PPQMGgb1bX2c+5ACFPZn3Rb17J4A9v+NmPTpdgL1oUy4+U5dhPVuIB77ar809lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 9.97829586e-02 -1.08963541e-04 1.74187437e-01]\n [ 8.90291706e-02 -9.98409092e-02 2.41239756e-01]\n [ 9.80669931e-02 1.13616847e-01 1.31773740e-01]\n [ 1.12499624e-01 -6.01435006e-02 2.13273093e-01]\n [ 5.05961925e-02 -6.29997477e-02 2.25949690e-01]\n [ 6.49431050e-02 -4.83318307e-02 6.25753030e-02]\n [ 5.63695394e-02 -6.26778156e-02 1.70240045e-01]\n [ 5.50759546e-02 -1.32356092e-01 1.00433066e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId554zhYQB8CUhpRSlIwBbJRLMowBdJRHQKWB40D2alV1fZQoaAZoCWgPQwgguMoTCDsEwJSGlFKUaBVLMmgWR0ClgYhbfP5YdX2UKGgGaAloD0MIIxYx7DBmBcCUhpRSlGgVSzJoFkdApYEtj9XLeXV9lChoBmgJaA9DCCzTLxFvnf+/lIaUUpRoFUsyaBZHQKWAyTJyQxN1fZQoaAZoCWgPQwj4+lqXGrEUwJSGlFKUaBVLMmgWR0ClhZgWzniedX2UKGgGaAloD0MIjj9R2bDm/7+UhpRSlGgVSzJoFkdApYUzc6/7BXV9lChoBmgJaA9DCJDaxMn9LhLAlIaUUpRoFUsyaBZHQKWE05Etuk11fZQoaAZoCWgPQwhmM4ekFuoBwJSGlFKUaBVLMmgWR0ClhH2dd3SsdX2UKGgGaAloD0MIG6A01ChEAMCUhpRSlGgVSzJoFkdApYQn+sHSnnV9lChoBmgJaA9DCO9YbJOKBgnAlIaUUpRoFUsyaBZHQKWDzcZccEN1fZQoaAZoCWgPQwi/R/31CmsIwJSGlFKUaBVLMmgWR0Clg3OWBz3idX2UKGgGaAloD0MIodl1b0UCDsCUhpRSlGgVSzJoFkdApYMPvhIe5nV9lChoBmgJaA9DCNS4N79h4gDAlIaUUpRoFUsyaBZHQKWIXhWo3rF1fZQoaAZoCWgPQwidf7vs130IwJSGlFKUaBVLMmgWR0Clh/m0mdAgdX2UKGgGaAloD0MIgC2vXG+bDMCUhpRSlGgVSzJoFkdApYeZ/I8yOHV9lChoBmgJaA9DCHjUmBBzSf2/lIaUUpRoFUsyaBZHQKWHRC/oJRh1fZQoaAZoCWgPQwhFDhE3p/IFwJSGlFKUaBVLMmgWR0Clhu6nzg/DdX2UKGgGaAloD0MIGw+22O2TB8CUhpRSlGgVSzJoFkdApYaU/dIoVnV9lChoBmgJaA9DCGMraFpiJQnAlIaUUpRoFUsyaBZHQKWGO3zcynF1fZQoaAZoCWgPQwiBIhYx7HABwJSGlFKUaBVLMmgWR0ClhdgjyFwldX2UKGgGaAloD0MIZjIcz2fgAMCUhpRSlGgVSzJoFkdApYtg5eZ5RnV9lChoBmgJaA9DCDJYcaq1UAzAlIaUUpRoFUsyaBZHQKWK/L1VYIV1fZQoaAZoCWgPQwgwnkFD/yQSwJSGlFKUaBVLMmgWR0Clip0wSJ0odX2UKGgGaAloD0MIkWEVb2RuEcCUhpRSlGgVSzJoFkdApYpHZsbednV9lChoBmgJaA9DCFZjCWtjfBDAlIaUUpRoFUsyaBZHQKWJ8dxyXD51fZQoaAZoCWgPQwgsnnqkwU0GwJSGlFKUaBVLMmgWR0CliZg4n4O+dX2UKGgGaAloD0MI6ukj8IdfCsCUhpRSlGgVSzJoFkdApYk/EdeY2XV9lChoBmgJaA9DCFEWvr7WBQ7AlIaUUpRoFUsyaBZHQKWI2+LWI451fZQoaAZoCWgPQwiA1CZO7ncIwJSGlFKUaBVLMmgWR0Cljl4PGyX2dX2UKGgGaAloD0MIAFKbOLlf/7+UhpRSlGgVSzJoFkdApY35wuM+/3V9lChoBmgJaA9DCBk5C3vaofq/lIaUUpRoFUsyaBZHQKWNmg2606Z1fZQoaAZoCWgPQwhVhQZi2Uz5v5SGlFKUaBVLMmgWR0CljURTsIE9dX2UKGgGaAloD0MIXtbEAl/RCsCUhpRSlGgVSzJoFkdApYzu2RaHK3V9lChoBmgJaA9DCK5lMhzPxwPAlIaUUpRoFUsyaBZHQKWMlZeRgZ11fZQoaAZoCWgPQwhQ3zKny+L1v5SGlFKUaBVLMmgWR0CljDvtUn5SdX2UKGgGaAloD0MIyeaqeY4oBsCUhpRSlGgVSzJoFkdApYvYbXHzYnV9lChoBmgJaA9DCLNF0m70sQXAlIaUUpRoFUsyaBZHQKWRCv8IiTt1fZQoaAZoCWgPQwg2PpP989QCwJSGlFKUaBVLMmgWR0ClkKWSt/4JdX2UKGgGaAloD0MIvAfovpx5B8CUhpRSlGgVSzJoFkdApZBFG9YfXHV9lChoBmgJaA9DCPOqzmqBPQbAlIaUUpRoFUsyaBZHQKWP7slb/wR1fZQoaAZoCWgPQwhKfO4E+68SwJSGlFKUaBVLMmgWR0Clj5i5NGmUdX2UKGgGaAloD0MI/FQVGojlBMCUhpRSlGgVSzJoFkdApY8987ZFonV9lChoBmgJaA9DCKG/0CNGrxDAlIaUUpRoFUsyaBZHQKWO4zmfXf91fZQoaAZoCWgPQwhnDd5X5cL+v5SGlFKUaBVLMmgWR0Cljn75M10ldX2UKGgGaAloD0MIeZRKeEIPD8CUhpRSlGgVSzJoFkdApZK1uzhP03V9lChoBmgJaA9DCHjvqDEhJgHAlIaUUpRoFUsyaBZHQKWSULAHmih1fZQoaAZoCWgPQwjpK0gzFk0SwJSGlFKUaBVLMmgWR0ClkfAqur6tdX2UKGgGaAloD0MI8S2sG++OA8CUhpRSlGgVSzJoFkdApZGZmTTvzHV9lChoBmgJaA9DCHcwYp8ACvu/lIaUUpRoFUsyaBZHQKWRQ4jKPn11fZQoaAZoCWgPQwhJg9vawjMAwJSGlFKUaBVLMmgWR0ClkOjriVB2dX2UKGgGaAloD0MIGLFPAMUoAMCUhpRSlGgVSzJoFkdApZCOKyfL93V9lChoBmgJaA9DCDeLFwtDBAjAlIaUUpRoFUsyaBZHQKWQKctoSL91fZQoaAZoCWgPQwiquHGL+VkAwJSGlFKUaBVLMmgWR0CllHj59E1EdX2UKGgGaAloD0MIFJUNayqLAcCUhpRSlGgVSzJoFkdApZQT3M6ikHV9lChoBmgJaA9DCKoPJO8cqgPAlIaUUpRoFUsyaBZHQKWTs1qnFYN1fZQoaAZoCWgPQwiK52wBoRUEwJSGlFKUaBVLMmgWR0Clk1zHS4OMdX2UKGgGaAloD0MIQfLOoQz1BMCUhpRSlGgVSzJoFkdApZMGaDwpfHV9lChoBmgJaA9DCNVamIV2bgHAlIaUUpRoFUsyaBZHQKWSq89wFTx1fZQoaAZoCWgPQwjPg7uzdlv+v5SGlFKUaBVLMmgWR0ClklE4NqgzdX2UKGgGaAloD0MISgfr/xymDMCUhpRSlGgVSzJoFkdApZHs74i5eHV9lChoBmgJaA9DCIlA9Q8iWQjAlIaUUpRoFUsyaBZHQKWWJDlYEGJ1fZQoaAZoCWgPQwj3BfTCnSsQwJSGlFKUaBVLMmgWR0Cllb8twrDqdX2UKGgGaAloD0MIsFkuG52jE8CUhpRSlGgVSzJoFkdApZVez4UN8XV9lChoBmgJaA9DCJOLMbCOYw7AlIaUUpRoFUsyaBZHQKWVCDlHSWt1fZQoaAZoCWgPQwjyzwziA7sMwJSGlFKUaBVLMmgWR0CllLIwM6RydX2UKGgGaAloD0MIHlTiOsYVCsCUhpRSlGgVSzJoFkdApZRXVqesgnV9lChoBmgJaA9DCDJxqyAGOgDAlIaUUpRoFUsyaBZHQKWT/I0ZWJd1fZQoaAZoCWgPQwhtjnObcM8CwJSGlFKUaBVLMmgWR0Clk5g5R0lrdX2UKGgGaAloD0MI5GpkV1pmA8CUhpRSlGgVSzJoFkdApZfpkZrHl3V9lChoBmgJaA9DCLQglPdxFALAlIaUUpRoFUsyaBZHQKWXhCkXUH91fZQoaAZoCWgPQwgc7iO3Jq0SwJSGlFKUaBVLMmgWR0CllyODzyz5dX2UKGgGaAloD0MIRwA3ixeLA8CUhpRSlGgVSzJoFkdApZbNEw35vnV9lChoBmgJaA9DCN8a2CrB4gPAlIaUUpRoFUsyaBZHQKWWdvrGBFx1fZQoaAZoCWgPQwiJYYcx6W/9v5SGlFKUaBVLMmgWR0CllhwyAQQMdX2UKGgGaAloD0MIBz9xAP3+/7+UhpRSlGgVSzJoFkdApZXBUBGQS3V9lChoBmgJaA9DCDBHj9/bdAnAlIaUUpRoFUsyaBZHQKWVXNY8uBd1fZQoaAZoCWgPQwjGounsZHD9v5SGlFKUaBVLMmgWR0ClmaEHlfZ3dX2UKGgGaAloD0MIJqyNsRO+BcCUhpRSlGgVSzJoFkdApZk8CDEm6XV9lChoBmgJaA9DCAMkmkARqw3AlIaUUpRoFUsyaBZHQKWY269TP0J1fZQoaAZoCWgPQwhaLEXylUD+v5SGlFKUaBVLMmgWR0ClmIV8kUsWdX2UKGgGaAloD0MIRj8aTpk7AMCUhpRSlGgVSzJoFkdApZgvV09yLnV9lChoBmgJaA9DCCU/4les4QzAlIaUUpRoFUsyaBZHQKWX1IyTINp1fZQoaAZoCWgPQwhK1As+zTkTwJSGlFKUaBVLMmgWR0Cll3nQpnYhdX2UKGgGaAloD0MI4e8XsyXrCsCUhpRSlGgVSzJoFkdApZcVYlpoK3V9lChoBmgJaA9DCAaCABk6dhDAlIaUUpRoFUsyaBZHQKWbSEAYHgR1fZQoaAZoCWgPQwjVCP1Mva4DwJSGlFKUaBVLMmgWR0ClmuLrX18LdX2UKGgGaAloD0MIzt+EQgRcCsCUhpRSlGgVSzJoFkdApZqCTyJ9A3V9lChoBmgJaA9DCOm68IPzqQ3AlIaUUpRoFUsyaBZHQKWaK9/SYw91fZQoaAZoCWgPQwhlVYSbjMoOwJSGlFKUaBVLMmgWR0ClmdW+49X+dX2UKGgGaAloD0MIXr2KjA7oB8CUhpRSlGgVSzJoFkdApZl7Aaef7XV9lChoBmgJaA9DCBNlbynnSwrAlIaUUpRoFUsyaBZHQKWZIBaLXMB1fZQoaAZoCWgPQwjEXihgO/gOwJSGlFKUaBVLMmgWR0ClmLu01IiDdX2UKGgGaAloD0MIDw72JoakB8CUhpRSlGgVSzJoFkdApZz9ilSCOHV9lChoBmgJaA9DCESlETP7/A7AlIaUUpRoFUsyaBZHQKWcmD9Oymh1fZQoaAZoCWgPQwhAEvbtJOL3v5SGlFKUaBVLMmgWR0ClnDfCQ9zPdX2UKGgGaAloD0MICObo8Xu7DcCUhpRSlGgVSzJoFkdApZvhcJMQE3V9lChoBmgJaA9DCAaFQZlGswzAlIaUUpRoFUsyaBZHQKWbiy5Zr591fZQoaAZoCWgPQwg3FhQGZVoNwJSGlFKUaBVLMmgWR0ClmzBysCDFdX2UKGgGaAloD0MIPNujN9xnDMCUhpRSlGgVSzJoFkdApZrV8G9pRHV9lChoBmgJaA9DCNHOaRZot/i/lIaUUpRoFUsyaBZHQKWacbhm5Dt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 8, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (732 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.0116826253943145, "std_reward": 0.6849504664101175, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-29T20:26:35.488125"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f5ce227f76a7abfdd5d0f1c1b8c5555e7474c51119bb8302845b43d6619c359
3
+ size 2387