Snearec commited on
Commit
45693cf
·
1 Parent(s): 2332b15

vista de modelo

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md CHANGED
@@ -1,3 +1,87 @@
1
  ---
2
  license: afl-3.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: afl-3.0
3
  ---
4
+ ---
5
+ tags:
6
+ - yolov5
7
+ - yolo
8
+ - vision
9
+ - object-detection
10
+ - pytorch
11
+ library_name: yolov5
12
+ library_version: 7.0.6
13
+ inference: false
14
+
15
+ datasets:
16
+ - keremberke/license-plate-object-detection
17
+
18
+ model-index:
19
+ - name: keremberke/yolov5m-license-plate
20
+ results:
21
+ - task:
22
+ type: object-detection
23
+
24
+ dataset:
25
+ type: keremberke/license-plate-object-detection
26
+ name: keremberke/license-plate-object-detection
27
+ split: validation
28
+
29
+ metrics:
30
+ - type: precision # since [email protected] is not available on hf.co/metrics
31
+ value: 0.9882982754936463 # min: 0.0 - max: 1.0
32
33
+ ---
34
+
35
+ <div align="center">
36
+ <img width="640" alt="keremberke/yolov5m-license-plate" src="https://huggingface.co/keremberke/yolov5m-license-plate/resolve/main/sample_visuals.jpg">
37
+ </div>
38
+
39
+
40
+ ```bash
41
+ pip install -U yolov5
42
+ ```
43
+
44
+ - Load model and perform prediction:
45
+
46
+ ```python
47
+ import yolov5
48
+
49
+ # load model
50
+ model = yolov5.load('keremberke/yolov5m-license-plate')
51
+
52
+ # set model parameters
53
+ model.conf = 0.25 # NMS confidence threshold
54
+ model.iou = 0.45 # NMS IoU threshold
55
+ model.agnostic = False # NMS class-agnostic
56
+ model.multi_label = False # NMS multiple labels per box
57
+ model.max_det = 1000 # maximum number of detections per image
58
+
59
+ # set image
60
+ img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
61
+
62
+ # perform inference
63
+ results = model(img, size=640)
64
+
65
+ # inference with test time augmentation
66
+ results = model(img, augment=True)
67
+
68
+ # parse results
69
+ predictions = results.pred[0]
70
+ boxes = predictions[:, :4] # x1, y1, x2, y2
71
+ scores = predictions[:, 4]
72
+ categories = predictions[:, 5]
73
+
74
+ # show detection bounding boxes on image
75
+ results.show()
76
+
77
+ # save results into "results/" folder
78
+ results.save(save_dir='results/')
79
+ ```
80
+
81
+ - Finetune the model on your custom dataset:
82
+
83
+ ```bash
84
+ yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5m-license-plate --epochs 10
85
+ ```
86
+
87
+ **More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)*