Sohan Anisetty
commited on
Commit
•
3ef4848
1
Parent(s):
dc57090
add readme
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# OFA-tiny
|
6 |
+
|
7 |
+
## Introduction
|
8 |
+
This is the **tiny** version of OFA pretrained model finetuned on vqaV2.
|
9 |
+
|
10 |
+
The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights.
|
11 |
+
|
12 |
+
|
13 |
+
## How to use
|
14 |
+
Download the models as shown below.
|
15 |
+
```bash
|
16 |
+
git clone https://github.com/sohananisetty/OFA_VQA.git
|
17 |
+
git clone https://huggingface.co/SohanAnisetty/ofa-vqa-tiny
|
18 |
+
```
|
19 |
+
|
20 |
+
After, refer the path to ofa-vqa-tiny to `ckpt_dir`, and prepare an image for the testing example below.
|
21 |
+
|
22 |
+
```python
|
23 |
+
>>> from PIL import Image
|
24 |
+
>>> from torchvision import transforms
|
25 |
+
>>> from transformers import OFATokenizer, OFAModelForVQA
|
26 |
+
|
27 |
+
>>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
|
28 |
+
>>> resolution = 256
|
29 |
+
>>> patch_resize_transform = transforms.Compose([
|
30 |
+
lambda image: image.convert("RGB"),
|
31 |
+
transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC),
|
32 |
+
transforms.ToTensor(),
|
33 |
+
transforms.Normalize(mean=mean, std=std)
|
34 |
+
])
|
35 |
+
|
36 |
+
|
37 |
+
>>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir)
|
38 |
+
|
39 |
+
>>> txt = " what does the image describe?"
|
40 |
+
>>> inputs = tokenizer([txt], return_tensors="pt").input_ids
|
41 |
+
>>> img = Image.open(path_to_image)
|
42 |
+
>>> patch_img = patch_resize_transform(img).unsqueeze(0)
|
43 |
+
|
44 |
+
|
45 |
+
>>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False)
|
46 |
+
>>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3)
|
47 |
+
|
48 |
+
>>> print(tokenizer.batch_decode(gen, skip_special_tokens=True))
|
49 |
+
```
|